Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)

 Download zip file 
Help downloading and running models
Accession:235768
" ...Loss of tonic neuromodulatory excitation, mediated by nicotinic acetylcholine or serotonin (5HT3A) receptors, of 5HT3-immunopositive interneurons caused an increase in amplitude and slowing of the delta rhythm until each period became the "wave" component of the spike and wave discharge. As with the normal delta rhythm, the wave of a spike and wave discharge originated in cortical layer 5. In contrast, the "spike" component of the spike and wave discharge originated from a relative failure of fast inhibition in layers 2/3-switching pyramidal cell action potential outputs from single, sparse spiking during delta rhythms to brief, intense burst spiking, phase-locked to the field spike. The mechanisms underlying this loss of superficial layer fast inhibition, and a concomitant increase in slow inhibition, appeared to be precipitated by a loss of neuropeptide Y (NPY)-mediated local circuit inhibition and a subsequent increase in vasoactive intestinal peptide (VIP)-mediated disinhibition. Blockade of NPY Y1 receptors was sufficient to generate spike and wave discharges, whereas blockade of VIP receptors almost completely abolished this form of epileptiform activity. These data suggest that aberrant, activity-dependent neuropeptide corelease can have catastrophic effects on neocortical dynamics."
Reference:
1 . Hall S, Hunt M, Simon A, Cunnington LG, Carracedo LM, Schofield IS, Forsyth R, Traub RD, Whittington MA (2015) Unbalanced Peptidergic Inhibition in Superficial Neocortex Underlies Spike and Wave Seizure Activity. J Neurosci 35:9302-14 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex; Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex U1 L6 pyramidal corticalthalamic GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: FORTRAN;
Model Concept(s): Epilepsy;
Implementer(s): Traub, Roger D [rtraub at us.ibm.com];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex U1 L6 pyramidal corticalthalamic GLU cell; GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I A, slow;
/
HallEtAl2015
readme.html
dexptablebig_setup.f *
dexptablesmall_setup.f *
fnmda.f *
groucho_gapbld.f *
groucho_gapbld_mix.f *
integrate_deepaxaxx.f *
integrate_deepbaskx.f *
integrate_deepLTSx.f *
integrate_deepng.f *
integrate_nontuftRSXXB.f *
integrate_nrtxB.f *
integrate_spinstelldiegoxB.f *
integrate_supaxaxx.f *
integrate_supbaskx.f *
integrate_supLTSX.f *
integrate_supng.f *
integrate_suppyrFRBxPB.f *
integrate_suppyrRS.f *
integrate_suppyrRS[1].f *
integrate_suppyrRSXPB.f *
integrate_tcrxB.f *
integrate_tuftIBVx3B.f *
integrate_tuftRSXXB.f *
makefile *
otis_table_setup.f *
spikewaveS1.pdf
spikewaveS1.png
spikewaveS5.f *
spikewaveS5.pdf
spikewaveS5.png
synaptic_compmap_construct.f *
synaptic_map_construct.f *
                            
	
! Integration routine for suppyrRS cells
! Routine adapted from scortn in supergj.f
       SUBROUTINE INTEGRATE_suppyrRS (O, time, numcell,     
     &    V, curr,
     & gAMPA, gNMDA, gGABA_A,
     & Mg, 
     & gapcon  ,totaxgj   ,gjtable, dt,
     & totaxgj_mix, gjtable_mix, num_other, vax,
     &  chi,mnaf,mnap,
     &  hnaf,mkdr,mka,
     &  hka,mk2,hk2,
     &  mkm,mkc,mkahp,
     &  mcat,hcat,mcal,
     &  mar,field_1mm,field_2mm)
! num_other here = num suppyrFRB, vax = vax_suppyrFRB

       SAVE

       INTEGER, PARAMETER:: numcomp = 74
! numcomp here must be compatible with numcomp_suppyrRS in calling prog.
       INTEGER  numcell, num_other
       INTEGER J1, I, J, K, K1, K2, L, L1, O
       REAL*8 c(numcomp), curr(numcomp,numcell)
       REAL*8  Z, Z1, Z2, Z3, Z4, DT, time
       integer totaxgj, gjtable(totaxgj,4)
       integer totaxgj_mix, gjtable_mix(totaxgj_mix,4)
       real*8 gapcon, gAMPA(numcomp,numcell),
     &        gNMDA(numcomp,numcell), gGABA_A(numcomp,numcell)
       real*8 Mg, V(numcomp,numcell)
       real*8 vax (num_other)

c CINV is 1/C, i.e. inverse capacitance
       real*8 chi(numcomp,numcell),
     & mnaf(numcomp,numcell),mnap(numcomp,numcell),
     x hnaf(numcomp,numcell), mkdr(numcomp,numcell),
     x mka(numcomp,numcell),hka(numcomp,numcell),
     x mk2(numcomp,numcell), cinv(numcomp),
     x hk2(numcomp,numcell),mkm(numcomp,numcell),
     x mkc(numcomp,numcell),mkahp(numcomp,numcell),
     x mcat(numcomp,numcell),hcat(numcomp,numcell),
     x mcal(numcomp,numcell), betchi(numcomp),
     x mar(numcomp,numcell),jacob(numcomp,numcomp),
     x gam(0: numcomp,0: numcomp),gL(numcomp),gnaf(numcomp),
     x gnap(numcomp),gkdr(numcomp),gka(numcomp),
     x gk2(numcomp),gkm(numcomp),
     x gkc(numcomp),gkahp(numcomp),
     x gcat(numcomp),gcaL(numcomp),gar(numcomp),
     x cafor(numcomp)
       real*8
     X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640),
     X   dbetam_naf(0:640),
     X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640),
     X   dbetah_naf(0:640),
     X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640),
     X   dbetam_kdr(0:640),
     X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) ,
     X   dbetam_ka(0:640),
     X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640),
     X   dbetah_ka(0:640),
     X alpham_k2(0:640), betam_k2(0:640), dalpham_k2(0:640),
     X   dbetam_k2(0:640),
     X alphah_k2(0:640), betah_k2(0:640), dalphah_k2(0:640),
     X   dbetah_k2(0:640),
     X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640),
     X   dbetam_km(0:640),
     X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640),
     X   dbetam_kc(0:640),
     X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640),
     X   dbetam_cat(0:640),
     X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640),
     X   dbetah_cat(0:640),
     X alpham_caL(0:640),betam_caL(0:640),dalpham_caL(0:640),
     X   dbetam_caL(0:640),
     X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640),
     X   dbetam_ar(0:640)
       real*8 vL(numcomp),vk(numcomp),vna,var,vca,vgaba_a
       real*8 depth(12), membcurr(12), field_1mm, field_2mm
       integer level(numcomp)

        INTEGER NEIGH(numcomp,10), NNUM(numcomp)
        INTEGER igap1, igap2
c the f's are the functions giving 1st derivatives for evolution of
c the differential equations for the voltages (v), calcium (chi), and
c other state variables.
       real*8 fv(numcomp), fchi(numcomp),
     x fmnaf(numcomp),fhnaf(numcomp),fmkdr(numcomp),
     x fmka(numcomp),fhka(numcomp),fmk2(numcomp),
     x fhk2(numcomp),fmnap(numcomp),
     x fmkm(numcomp),fmkc(numcomp),fmkahp(numcomp),
     x fmcat(numcomp),fhcat(numcomp),fmcal(numcomp),
     x fmar(numcomp)

c below are for calculating the partial derivatives
       real*8 dfv_dv(numcomp,numcomp), dfv_dchi(numcomp),
     x  dfv_dmnaf(numcomp),  dfv_dmnap(numcomp),
     x  dfv_dhnaf(numcomp),dfv_dmkdr(numcomp),
     x  dfv_dmka(numcomp),dfv_dhka(numcomp),
     x  dfv_dmk2(numcomp),dfv_dhk2(numcomp),
     x  dfv_dmkm(numcomp),dfv_dmkc(numcomp),
     x  dfv_dmkahp(numcomp),dfv_dmcat(numcomp),
     x  dfv_dhcat(numcomp),dfv_dmcal(numcomp),
     x  dfv_dmar(numcomp)

        real*8 dfchi_dv(numcomp), dfchi_dchi(numcomp),
     x dfmnaf_dmnaf(numcomp), dfmnaf_dv(numcomp),
     x dfhnaf_dhnaf(numcomp),
     x dfmnap_dmnap(numcomp), dfmnap_dv(numcomp),
     x dfhnaf_dv(numcomp),dfmkdr_dmkdr(numcomp),
     x dfmkdr_dv(numcomp),
     x dfmka_dmka(numcomp),dfmka_dv(numcomp),
     x dfhka_dhka(numcomp),dfhka_dv(numcomp),
     x dfmk2_dmk2(numcomp),dfmk2_dv(numcomp),
     x dfhk2_dhk2(numcomp),dfhk2_dv(numcomp),
     x dfmkm_dmkm(numcomp),dfmkm_dv(numcomp),
     x dfmkc_dmkc(numcomp),dfmkc_dv(numcomp),
     x dfmcat_dmcat(numcomp),dfmcat_dv(numcomp),dfhcat_dhcat(numcomp),
     x dfhcat_dv(numcomp),dfmcal_dmcal(numcomp),dfmcal_dv(numcomp),
     x dfmar_dmar(numcomp),dfmar_dv(numcomp),dfmkahp_dchi(numcomp),
     x dfmkahp_dmkahp(numcomp), dt2

       REAL*8 OPEN(numcomp),gamma(numcomp),gamma_prime(numcomp)
c gamma is function of chi used in calculating KC conductance
       REAL*8 alpham_ahp(numcomp), alpham_ahp_prime(numcomp)
       REAL*8 gna_tot(numcomp),gk_tot(numcomp),gca_tot(numcomp)
       REAL*8 gca_high(numcomp), gar_tot(numcomp)
c this will be gCa conductance corresponding to high-thresh channels

       REAL*8 A, BB1, BB2  ! params. for FNMDA.f


           if (O.eq.1) then
c do initialization

c Program fnmda assumes A, BB1, BB2 defined in calling program
c as follows:
         A = DEXP(-2.847d0)
         BB1 = DEXP(-.693d0)
         BB2 = DEXP(-3.101d0)

c       goto 4000
       CALL   SCORT_SETUP_suppyrRS
     X   (alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
     X    alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
     X    alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
     X    alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
     X    alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
     X    alpham_k2 , betam_k2 , dalpham_k2 , dbetam_k2 ,
     X    alphah_k2 , betah_k2 , dalphah_k2 , dbetah_k2 ,
     X    alpham_km , betam_km , dalpham_km , dbetam_km ,
     X    alpham_kc , betam_kc , dalpham_kc , dbetam_kc ,
     X    alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
     X    alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
     X    alpham_caL, betam_caL, dalpham_caL, dbetam_caL,
     X    alpham_ar , betam_ar , dalpham_ar , dbetam_ar)

        CALL SCORTMAJ_suppyrRS
     X             (GL,GAM,GKDR,GKA,GKC,GKAHP,GK2,GKM,
     X              GCAT,GCAL,GNAF,GNAP,GAR,
     X    CAFOR,JACOB,C,BETCHI,NEIGH,NNUM,depth,level)

          do i = 1, numcomp
             cinv(i) = 1.d0 / c(i)
          end do
4000      CONTINUE

           do i = 1, numcomp
          vL(i) = -70.d0
          vK(i) = -95.d0
           end do

        VNA = 50.d0
        VCA = 125.d0
        VAR = -43.d0
        VAR = -35.d0
c -43 mV from Huguenard & McCormick
        VGABA_A = -81.d0
c       write(6,901) VNa, VCa, VK(1), O
901     format('VNa =',f6.2,' VCa =',f6.2,' VK =',f6.2,
     &   ' O = ',i3)

c ? initialize membrane state variables?
         do L = 1, numcell  
         do i = 1, numcomp
        v(i,L) = VL(i)
	chi(i,L) = 0.d0
	mnaf(i,L) = 0.d0
	mkdr(i,L) = 0.d0
	mk2(i,L) = 0.d0
	mkm(i,L) = 0.d0
	mkc(i,L) = 0.d0
	mkahp(i,L) = 0.d0
	mcat(i,L) = 0.d0
	mcal(i,L) = 0.d0
         end do
         end do

          do L = 1, numcell
        k1 = idnint (4.d0 * (v(1,L) + 120.d0))

            do i = 1, numcomp
      hnaf(i,L) = alphah_naf(k1)/(alphah_naf(k1)
     &       +betah_naf(k1))
      hka(i,L) = alphah_ka(k1)/(alphah_ka(k1)
     &                               +betah_ka(k1))
      hk2(i,L) = alphah_k2(k1)/(alphah_k2(k1)
     &                                +betah_k2(k1))
      hcat(i,L)=alphah_cat(k1)/(alphah_cat(k1)
     &                                +betah_cat(k1))
c     mar=alpham_ar(k1)/(alpham_ar(k1)+betam_ar(k1))
      mar(i,L) = .25d0
             end do
           end do


             do i = 1, numcomp
	    open(i) = 0.d0
            gkm(i) = 2.d0 * gkm(i)
             end do

         do i = 1, 68
           gnaf(i) = 1.25d0 * gnaf(i)
           gkdr(i) = 1.25d0 * gkdr(i)
         end do
 
c Perhaps reduce fast gNa on IS
          gnaf(69) = 1.00d0 * gnaf(69)
c         gnaf(69) = 0.25d0 * gnaf(69)
          gnaf(70) = 1.00d0 * gnaf(70)
c         gnaf(70) = 0.25d0 * gnaf(70)

c Perhaps reduce coupling between soma and IS
c         gam(1,69) = 0.15d0 * gam(1,69)
c         gam(69,1) = 0.15d0 * gam(69,1)

c Determine which cells are FRB and which RS.
c           if (L.le.(nL2-nFRB)) then
c              z1 = 0.0d0
               z1 = 0.2d0
               z2 = 1.6d0
c              z2 = 1.0d0
               z3 = 0.4d0
               z4 = 1.0d0
c RS cell
c           else
c              z1 = 1.50d0
c              z2 = 0.6d0
c              z3 = 1.d0
c              z4 = 1.d0
c FRB cell
c           endif
             do i = 1, numcomp
              gnap(i) = z1 * gnap(i)
              gkc (i) = z2 * gkc (i)
              gkahp(i) = z3 * gkahp(i)
              gkm (i) = z4 * gkm (i)
             end do


          endif
c End initialization

          do i = 1, 12
           membcurr(i) = 0.d0
          end do

c                  goto 2001


              do L = 1, numcell

	  do i = 1, numcomp
	  do j = 1, nnum(i)
	   if (neigh(i,j).gt.numcomp) then
          write(6,433) i, j, L
433       format(' ls ',3x,3i5)
           endif
	end do
	end do

       DO I = 1, numcomp
          FV(I) = -GL(I) * (V(I,L) - VL(i)) * cinv(i)
          DO J = 1, NNUM(I)
             K = NEIGH(I,J)
302     FV(I) = FV(I) + GAM(I,K) * (V(K,L) - V(I,L)) * cinv(i)
           END DO
       END DO
301    CONTINUE


       CALL FNMDA (V, OPEN, numcell, numcomp, MG, L,
     &                 A, BB1, BB2)

      DO I = 1, numcomp
       FV(I) = FV(I) + ( CURR(I,L)
     X   - (gampa(I,L) + open(i) * gnmda(I,L))*V(I,L)
     X   - ggaba_a(I,L)*(V(I,L)-Vgaba_a) ) * cinv(i)
c above assumes equil. potential for AMPA & NMDA = 0 mV
      END DO
421      continue

       do m = 1, totaxgj
        if (gjtable(m,1).eq.L) then
         L1 = gjtable(m,3)
         igap1 = gjtable(m,2)
         igap2 = gjtable(m,4)
 	fv(igap1) = fv(igap1) + gapcon *
     &   (v(igap2,L1) - v(igap1,L)) * cinv(igap1)
        else if (gjtable(m,3).eq.L) then
         L1 = gjtable(m,1)
         igap1 = gjtable(m,4)
         igap2 = gjtable(m,2)
 	fv(igap1) = fv(igap1) + gapcon *
     &   (v(igap2,L1) - v(igap1,L)) * cinv(igap1)
        endif
       end do ! do m

       do m = 1, totaxgj_mix
        if (gjtable_mix(m,1).eq.L) then
         L1 = gjtable_mix(m,3)
         igap1 = gjtable_mix(m,2)
 	fv(igap1) = fv(igap1) + gapcon *
     &   (vax(L1) - v(igap1,L)) * cinv(igap1)
        endif
       end do ! do m

c      do i = 1, ngap(L) ! OBSOLETE CODE FROM SUPERGJ.F
c      L1 = list_gap(L,i)
c	fv(axsite) = fv(axsite) + gapcon *
c    &   (vaxgap_global(L1) - v(axsite,L)) * cinv(axsite)
c      end do  ! OBSOLETE CODE FROM SUPERGJ.F

       do i = 1, numcomp
        gamma(i) = dmin1 (1.d0, .004d0 * chi(i,L))
        if (chi(i,L).le.250.d0) then
          gamma_prime(i) = .004d0
        else
          gamma_prime(i) = 0.d0
        endif
c         endif
       end do

      DO I = 1, numcomp
       gna_tot(i) = gnaf(i) * (mnaf(i,L)**3) * hnaf(i,L) +
     x     gnap(i) * mnap(i,L)
       gk_tot(i) = gkdr(i) * (mkdr(i,L)**4) +
     x             gka(i)  * (mka(i,L)**4) * hka(i,L) +
     x             gk2(i)  * mk2(i,L) * hk2(i,L) +
     x             gkm(i)  * mkm(i,L) +
     x             gkc(i)  * mkc(i,L) * gamma(i) +
     x             gkahp(i)* mkahp(i,L)
       gca_tot(i) = gcat(i) * (mcat(i,L)**2) * hcat(i,L) +
     x              gcaL(i) * (mcaL(i,L)**2)
       gca_high(i) =
     x              gcaL(i) * (mcaL(i,L)**2)
       gar_tot(i) = gar(i) * mar(i,L)


       FV(I) = FV(I) - ( gna_tot(i) * (v(i,L) - vna)
     X  + gk_tot(i) * (v(i,L) - vK(i))
     X  + gca_tot(i) * (v(i,L) - vCa)
     X  + gar_tot(i) * (v(i,L) - var) ) * cinv(i)
c        endif
       END DO
88           continue

         do i = 1, numcomp
         do j = 1, numcomp
          if (i.ne.j) then
            dfv_dv(i,j) = jacob(i,j)
          else
            dfv_dv(i,j) = jacob(i,i) - cinv(i) *
     X  (gna_tot(i) + gk_tot(i) + gca_tot(i) + gar_tot(i)
     X   + ggaba_a(i,L) + gampa(i,L)
     X   + open(i) * gnmda(I,L) )
          endif
         end do
         end do

           do i = 1, numcomp
        dfv_dchi(i)  = - cinv(i) * gkc(i) * mkc(i,L) *
     x                     gamma_prime(i) * (v(i,L)-vK(i))
        dfv_dmnaf(i) = -3.d0 * cinv(i) * (mnaf(i,L)**2) *
     X    (gnaf(i) * hnaf(i,L)          ) * (v(i,L) - vna)
        dfv_dmnap(i) = - cinv(i) *
     X    (               gnap(i)) * (v(i,L) - vna)
        dfv_dhnaf(i) = - cinv(i) * gnaf(i) * (mnaf(i,L)**3) *
     X                    (v(i,L) - vna)
        dfv_dmkdr(i) = -4.d0 * cinv(i) * gkdr(i) * (mkdr(i,L)**3)
     X                   * (v(i,L) - vK(i))
        dfv_dmka(i)  = -4.d0 * cinv(i) * gka(i) * (mka(i,L)**3) *
     X                   hka(i,L) * (v(i,L) - vK(i))
        dfv_dhka(i)  = - cinv(i) * gka(i) * (mka(i,L)**4) *
     X                    (v(i,L) - vK(i))
      dfv_dmk2(i) = - cinv(i) * gk2(i) * hk2(i,L) * (v(i,L)-vK(i))
      dfv_dhk2(i) = - cinv(i) * gk2(i) * mk2(i,L) * (v(i,L)-vK(i))
      dfv_dmkm(i) = - cinv(i) * gkm(i) * (v(i,L) - vK(i))
      dfv_dmkc(i) = - cinv(i)*gkc(i) * gamma(i) * (v(i,L)-vK(i))
        dfv_dmkahp(i)= - cinv(i) * gkahp(i) * (v(i,L) - vK(i))
        dfv_dmcat(i)  = -2.d0 * cinv(i) * gcat(i) * mcat(i,L) *
     X                    hcat(i,L) * (v(i,L) - vCa)
        dfv_dhcat(i) = - cinv(i) * gcat(i) * (mcat(i,L)**2) *
     X                  (v(i,L) - vCa)
        dfv_dmcal(i) = -2.d0 * cinv(i) * gcal(i) * mcal(i,L) *
     X                      (v(i,L) - vCa)
        dfv_dmar(i) = - cinv(i) * gar(i) * (v(i,L) - var)
            end do

         do i = 1, numcomp
          fchi(i) = - cafor(i) * gca_high(i) * (v(i,L) - vca)
     x       - betchi(i) * chi(i,L)
          dfchi_dv(i) = - cafor(i) * gca_high(i)
          dfchi_dchi(i) = - betchi(i)
         end do

       do i = 1, numcomp
c Note possible increase in rate at which AHP current develops
c       alpham_ahp(i) = dmin1(0.2d-4 * chi(i,L),0.01d0)
        alpham_ahp(i) = dmin1(1.0d-4 * chi(i,L),0.01d0)
        if (chi(i,L).le.500.d0) then
c         alpham_ahp_prime(i) = 0.2d-4
          alpham_ahp_prime(i) = 1.0d-4
        else
          alpham_ahp_prime(i) = 0.d0
        endif
       end do

       do i = 1, numcomp
        fmkahp(i) = alpham_ahp(i) * (1.d0 - mkahp(i,L))
c    x                  -.001d0 * mkahp(i,L)
     x                  -.010d0 * mkahp(i,L)
c       dfmkahp_dmkahp(i) = - alpham_ahp(i) - .001d0
        dfmkahp_dmkahp(i) = - alpham_ahp(i) - .010d0
        dfmkahp_dchi(i) = alpham_ahp_prime(i) *
     x                     (1.d0 - mkahp(i,L))
       end do

          do i = 1, numcomp

       K1 = IDNINT ( 4.d0 * (V(I,L) + 120.d0) )
       IF (K1.GT.640) K1 = 640
       IF (K1.LT.  0) K1 =   0

c      persistentNa_shift =  0.d0
c      persistentNa_shift =  8.d0
       persistentNa_shift = 10.d0
       K2 = IDNINT ( 4.d0 * (V(I,L)+persistentNa_shift+ 120.d0) )
       IF (K2.GT.640) K2 = 640
       IF (K2.LT.  0) K2 =   0

c            fastNa_shift = -2.0d0
c            fastNa_shift = -2.5d0
             fastNa_shift = -3.5d0
       K0 = IDNINT ( 4.d0 * (V(I,L)+      fastNa_shift+ 120.d0) )
       IF (K0.GT.640) K0 = 640
       IF (K0.LT.  0) K0 =   0

        fmnaf(i) = alpham_naf(k0) * (1.d0 - mnaf(i,L)) -
     X              betam_naf(k0) * mnaf(i,L)
        fmnap(i) = alpham_naf(k2) * (1.d0 - mnap(i,L)) -
     X              betam_naf(k2) * mnap(i,L)
        fhnaf(i) = alphah_naf(k1) * (1.d0 - hnaf(i,L)) -
     X              betah_naf(k1) * hnaf(i,L)
        fmkdr(i) = alpham_kdr(k1) * (1.d0 - mkdr(i,L)) -
     X              betam_kdr(k1) * mkdr(i,L)
        fmka(i)  = alpham_ka (k1) * (1.d0 - mka(i,L)) -
     X              betam_ka (k1) * mka(i,L)
        fhka(i)  = alphah_ka (k1) * (1.d0 - hka(i,L)) -
     X              betah_ka (k1) * hka(i,L)
        fmk2(i)  = alpham_k2 (k1) * (1.d0 - mk2(i,L)) -
     X              betam_k2 (k1) * mk2(i,L)
        fhk2(i)  = alphah_k2 (k1) * (1.d0 - hk2(i,L)) -
     X              betah_k2 (k1) * hk2(i,L)
        fmkm(i)  = alpham_km (k1) * (1.d0 - mkm(i,L)) -
     X              betam_km (k1) * mkm(i,L)
        fmkc(i)  = alpham_kc (k1) * (1.d0 - mkc(i,L)) -
     X              betam_kc (k1) * mkc(i,L)
        fmcat(i) = alpham_cat(k1) * (1.d0 - mcat(i,L)) -
     X              betam_cat(k1) * mcat(i,L)
        fhcat(i) = alphah_cat(k1) * (1.d0 - hcat(i,L)) -
     X              betah_cat(k1) * hcat(i,L)
        fmcaL(i) = alpham_caL(k1) * (1.d0 - mcaL(i,L)) -
     X              betam_caL(k1) * mcaL(i,L)
        fmar(i)  = alpham_ar (k1) * (1.d0 - mar(i,L)) -
     X              betam_ar (k1) * mar(i,L)

       dfmnaf_dv(i) = dalpham_naf(k0) * (1.d0 - mnaf(i,L)) -
     X                  dbetam_naf(k0) * mnaf(i,L)
       dfmnap_dv(i) = dalpham_naf(k2) * (1.d0 - mnap(i,L)) -
     X                  dbetam_naf(k2) * mnap(i,L)
       dfhnaf_dv(i) = dalphah_naf(k1) * (1.d0 - hnaf(i,L)) -
     X                  dbetah_naf(k1) * hnaf(i,L)
       dfmkdr_dv(i) = dalpham_kdr(k1) * (1.d0 - mkdr(i,L)) -
     X                  dbetam_kdr(k1) * mkdr(i,L)
       dfmka_dv(i)  = dalpham_ka(k1) * (1.d0 - mka(i,L)) -
     X                  dbetam_ka(k1) * mka(i,L)
       dfhka_dv(i)  = dalphah_ka(k1) * (1.d0 - hka(i,L)) -
     X                  dbetah_ka(k1) * hka(i,L)
       dfmk2_dv(i)  = dalpham_k2(k1) * (1.d0 - mk2(i,L)) -
     X                  dbetam_k2(k1) * mk2(i,L)
       dfhk2_dv(i)  = dalphah_k2(k1) * (1.d0 - hk2(i,L)) -
     X                  dbetah_k2(k1) * hk2(i,L)
       dfmkm_dv(i)  = dalpham_km(k1) * (1.d0 - mkm(i,L)) -
     X                  dbetam_km(k1) * mkm(i,L)
       dfmkc_dv(i)  = dalpham_kc(k1) * (1.d0 - mkc(i,L)) -
     X                  dbetam_kc(k1) * mkc(i,L)
       dfmcat_dv(i) = dalpham_cat(k1) * (1.d0 - mcat(i,L)) -
     X                  dbetam_cat(k1) * mcat(i,L)
       dfhcat_dv(i) = dalphah_cat(k1) * (1.d0 - hcat(i,L)) -
     X                  dbetah_cat(k1) * hcat(i,L)
       dfmcaL_dv(i) = dalpham_caL(k1) * (1.d0 - mcaL(i,L)) -
     X                  dbetam_caL(k1) * mcaL(i,L)
       dfmar_dv(i)  = dalpham_ar(k1) * (1.d0 - mar(i,L)) -
     X                  dbetam_ar(k1) * mar(i,L)

       dfmnaf_dmnaf(i) =  - alpham_naf(k0) - betam_naf(k0)
       dfmnap_dmnap(i) =  - alpham_naf(k2) - betam_naf(k2)
       dfhnaf_dhnaf(i) =  - alphah_naf(k1) - betah_naf(k1)
       dfmkdr_dmkdr(i) =  - alpham_kdr(k1) - betam_kdr(k1)
       dfmka_dmka(i)  =   - alpham_ka (k1) - betam_ka (k1)
       dfhka_dhka(i)  =   - alphah_ka (k1) - betah_ka (k1)
       dfmk2_dmk2(i)  =   - alpham_k2 (k1) - betam_k2 (k1)
       dfhk2_dhk2(i)  =   - alphah_k2 (k1) - betah_k2 (k1)
       dfmkm_dmkm(i)  =   - alpham_km (k1) - betam_km (k1)
       dfmkc_dmkc(i)  =   - alpham_kc (k1) - betam_kc (k1)
       dfmcat_dmcat(i) =  - alpham_cat(k1) - betam_cat(k1)
       dfhcat_dhcat(i) =  - alphah_cat(k1) - betah_cat(k1)
       dfmcaL_dmcaL(i) =  - alpham_caL(k1) - betam_caL(k1)
       dfmar_dmar(i)  =   - alpham_ar (k1) - betam_ar (k1)

          end do

       dt2 = 0.5d0 * dt * dt

        do i = 1, numcomp
          v(i,L) = v(i,L) + dt * fv(i)
           do j = 1, numcomp
        v(i,L) = v(i,L) + dt2 * dfv_dv(i,j) * fv(j)
           end do
        v(i,L) = v(i,L) + dt2 * ( dfv_dchi(i) * fchi(i)
     X          + dfv_dmnaf(i) * fmnaf(i)
     X          + dfv_dmnap(i) * fmnap(i)
     X          + dfv_dhnaf(i) * fhnaf(i)
     X          + dfv_dmkdr(i) * fmkdr(i)
     X          + dfv_dmka(i)  * fmka(i)
     X          + dfv_dhka(i)  * fhka(i)
     X          + dfv_dmk2(i)  * fmk2(i)
     X          + dfv_dhk2(i)  * fhk2(i)
     X          + dfv_dmkm(i)  * fmkm(i)
     X          + dfv_dmkc(i)  * fmkc(i)
     X          + dfv_dmkahp(i)* fmkahp(i)
     X          + dfv_dmcat(i)  * fmcat(i)
     X          + dfv_dhcat(i) * fhcat(i)
     X          + dfv_dmcaL(i) * fmcaL(i)
     X          + dfv_dmar(i)  * fmar(i) )

        chi(i,L) = chi(i,L) + dt * fchi(i) + dt2 *
     X   (dfchi_dchi(i) * fchi(i) + dfchi_dv(i) * fv(i))
        mnaf(i,L) = mnaf(i,L) + dt * fmnaf(i) + dt2 *
     X   (dfmnaf_dmnaf(i) * fmnaf(i) + dfmnaf_dv(i)*fv(i))
        mnap(i,L) = mnap(i,L) + dt * fmnap(i) + dt2 *
     X   (dfmnap_dmnap(i) * fmnap(i) + dfmnap_dv(i)*fv(i))
        hnaf(i,L) = hnaf(i,L) + dt * fhnaf(i) + dt2 *
     X   (dfhnaf_dhnaf(i) * fhnaf(i) + dfhnaf_dv(i)*fv(i))
        mkdr(i,L) = mkdr(i,L) + dt * fmkdr(i) + dt2 *
     X   (dfmkdr_dmkdr(i) * fmkdr(i) + dfmkdr_dv(i)*fv(i))
        mka(i,L) =  mka(i,L) + dt * fmka(i) + dt2 *
     X   (dfmka_dmka(i) * fmka(i) + dfmka_dv(i) * fv(i))
        hka(i,L) =  hka(i,L) + dt * fhka(i) + dt2 *
     X   (dfhka_dhka(i) * fhka(i) + dfhka_dv(i) * fv(i))
        mk2(i,L) =  mk2(i,L) + dt * fmk2(i) + dt2 *
     X   (dfmk2_dmk2(i) * fmk2(i) + dfmk2_dv(i) * fv(i))
        hk2(i,L) =  hk2(i,L) + dt * fhk2(i) + dt2 *
     X   (dfhk2_dhk2(i) * fhk2(i) + dfhk2_dv(i) * fv(i))
        mkm(i,L) =  mkm(i,L) + dt * fmkm(i) + dt2 *
     X   (dfmkm_dmkm(i) * fmkm(i) + dfmkm_dv(i) * fv(i))
        mkc(i,L) =  mkc(i,L) + dt * fmkc(i) + dt2 *
     X   (dfmkc_dmkc(i) * fmkc(i) + dfmkc_dv(i) * fv(i))
        mkahp(i,L) = mkahp(i,L) + dt * fmkahp(i) + dt2 *
     X (dfmkahp_dmkahp(i)*fmkahp(i) + dfmkahp_dchi(i)*fchi(i))
        mcat(i,L) =  mcat(i,L) + dt * fmcat(i) + dt2 *
     X   (dfmcat_dmcat(i) * fmcat(i) + dfmcat_dv(i) * fv(i))
        hcat(i,L) =  hcat(i,L) + dt * fhcat(i) + dt2 *
     X   (dfhcat_dhcat(i) * fhcat(i) + dfhcat_dv(i) * fv(i))
        mcaL(i,L) =  mcaL(i,L) + dt * fmcaL(i) + dt2 *
     X   (dfmcaL_dmcaL(i) * fmcaL(i) + dfmcaL_dv(i) * fv(i))
        mar(i,L) =   mar(i,L) + dt * fmar(i) + dt2 *
     X   (dfmar_dmar(i) * fmar(i) + dfmar_dv(i) * fv(i))
c            endif
         end do

! Add membrane currents into membcurr for appropriate compartments
          do i = 1, 9
           j = level(i)
           membcurr(j) = membcurr(j) + fv(i) * c(i)
          end do
          do i = 14, 21
           j = level(i)
           membcurr(j) = membcurr(j) + fv(i) * c(i)
          end do
          do i = 26, 33
           j = level(i)
           membcurr(j) = membcurr(j) + fv(i) * c(i)
          end do
          do i = 39, 68
           j = level(i)
           membcurr(j) = membcurr(j) + fv(i) * c(i)
          end do

            end do
c Finish loop L = 1 to numcell

         field_1mm = 0.d0
         field_2mm = 0.d0

         do i = 1, 12
          field_1mm = field_1mm + membcurr(i) / dabs(1000.d0 - depth(i))
          field_2mm = field_2mm + membcurr(i) / dabs(2000.d0 - depth(i))
         end do

2001          CONTINUE

        END



C  SETS UP TABLES FOR RATE FUNCTIONS
       SUBROUTINE SCORT_SETUP_suppyrRS
     X   (alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
     X    alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
     X    alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
     X    alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
     X    alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
     X    alpham_k2 , betam_k2 , dalpham_k2 , dbetam_k2 ,
     X    alphah_k2 , betah_k2 , dalphah_k2 , dbetah_k2 ,
     X    alpham_km , betam_km , dalpham_km , dbetam_km ,
     X    alpham_kc , betam_kc , dalpham_kc , dbetam_kc ,
     X    alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
     X    alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
     X    alpham_caL, betam_caL, dalpham_caL, dbetam_caL,
     X    alpham_ar , betam_ar , dalpham_ar , dbetam_ar)
      INTEGER I,J,K
      real*8 minf, hinf, taum, tauh, V, Z, shift_hnaf,
     X  shift_mkdr,
     X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640),
     X   dbetam_naf(0:640),
     X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640),
     X   dbetah_naf(0:640),
     X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640),
     X   dbetam_kdr(0:640),
     X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) ,
     X   dbetam_ka(0:640),
     X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640),
     X   dbetah_ka(0:640),
     X alpham_k2(0:640), betam_k2(0:640), dalpham_k2(0:640),
     X   dbetam_k2(0:640),
     X alphah_k2(0:640), betah_k2(0:640), dalphah_k2(0:640),
     X   dbetah_k2(0:640),
     X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640),
     X   dbetam_km(0:640),
     X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640),
     X   dbetam_kc(0:640),
     X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640),
     X   dbetam_cat(0:640),
     X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640),
     X   dbetah_cat(0:640),
     X alpham_caL(0:640),betam_caL(0:640),dalpham_caL(0:640),
     X   dbetam_caL(0:640),
     X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640),
     X   dbetam_ar(0:640)
C FOR VOLTAGE, RANGE IS -120 TO +40 MV (absol.), 0.25 MV RESOLUTION


       DO 1, I = 0, 640
          V = dble(I)
          V = (V / 4.d0) - 120.d0

c gNa
           minf = 1.d0/(1.d0 + dexp((-V-38.d0)/10.d0))
           if (v.le.-30.d0) then
            taum = .025d0 + .14d0*dexp((v+30.d0)/10.d0)
           else
            taum = .02d0 + .145d0*dexp((-v-30.d0)/10.d0)
           endif
c from principal c. data, Martina & Jonas 1997, tau x 0.5
c Note that minf about the same for interneuron & princ. cell.
           alpham_naf(i) = minf / taum
           betam_naf(i) = 1.d0/taum - alpham_naf(i)

            shift_hnaf =  0.d0
        hinf = 1.d0/(1.d0 +
     x     dexp((v + shift_hnaf + 62.9d0)/10.7d0))
        tauh = 0.15d0 + 1.15d0/(1.d0+dexp((v+37.d0)/15.d0))
c from princ. cell data, Martina & Jonas 1997, tau x 0.5
            alphah_naf(i) = hinf / tauh
            betah_naf(i) = 1.d0/tauh - alphah_naf(i)

          shift_mkdr = 0.d0
c delayed rectifier, non-inactivating
       minf = 1.d0/(1.d0+dexp((-v-shift_mkdr-29.5d0)/10.0d0))
            if (v.le.-10.d0) then
             taum = .25d0 + 4.35d0*dexp((v+10.d0)/10.d0)
            else
             taum = .25d0 + 4.35d0*dexp((-v-10.d0)/10.d0)
            endif
              alpham_kdr(i) = minf / taum
              betam_kdr(i) = 1.d0 /taum - alpham_kdr(i)
c from Martina, Schultz et al., 1998. See espec. Table 1.

c A current: Huguenard & McCormick 1992, J Neurophysiol (TCR)
            minf = 1.d0/(1.d0 + dexp((-v-60.d0)/8.5d0))
            hinf = 1.d0/(1.d0 + dexp((v+78.d0)/6.d0))
        taum = .185d0 + .5d0/(dexp((v+35.8d0)/19.7d0) +
     x                            dexp((-v-79.7d0)/12.7d0))
        if (v.le.-63.d0) then
         tauh = .5d0/(dexp((v+46.d0)/5.d0) +
     x                  dexp((-v-238.d0)/37.5d0))
        else
         tauh = 9.5d0
        endif
           alpham_ka(i) = minf/taum
           betam_ka(i) = 1.d0 / taum - alpham_ka(i)
           alphah_ka(i) = hinf / tauh
           betah_ka(i) = 1.d0 / tauh - alphah_ka(i)

c h-current (anomalous rectifier), Huguenard & McCormick, 1992
           minf = 1.d0/(1.d0 + dexp((v+75.d0)/5.5d0))
           taum = 1.d0/(dexp(-14.6d0 -0.086d0*v) +
     x                   dexp(-1.87 + 0.07d0*v))
           alpham_ar(i) = minf / taum
           betam_ar(i) = 1.d0 / taum - alpham_ar(i)

c K2 K-current, McCormick & Huguenard
             minf = 1.d0/(1.d0 + dexp((-v-10.d0)/17.d0))
             hinf = 1.d0/(1.d0 + dexp((v+58.d0)/10.6d0))
            taum = 4.95d0 + 0.5d0/(dexp((v-81.d0)/25.6d0) +
     x                  dexp((-v-132.d0)/18.d0))
            tauh = 60.d0 + 0.5d0/(dexp((v-1.33d0)/200.d0) +
     x                  dexp((-v-130.d0)/7.1d0))
             alpham_k2(i) = minf / taum
             betam_k2(i) = 1.d0/taum - alpham_k2(i)
             alphah_k2(i) = hinf / tauh
             betah_k2(i) = 1.d0 / tauh - alphah_k2(i)

c voltage part of C-current, using 1994 kinetics, shift 60 mV
              if (v.le.-10.d0) then
       alpham_kc(i) = (2.d0/37.95d0)*dexp((v+50.d0)/11.d0 -
     x                                     (v+53.5)/27.d0)
       betam_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)-alpham_kc(i)
               else
       alpham_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)
       betam_kc(i) = 0.d0
               endif

c high-threshold gCa, from 1994, with 60 mV shift & no inactivn.
            alpham_cal(i) = 1.6d0/(1.d0+dexp(-.072d0*(v-5.d0)))
            betam_cal(i) = 0.1d0 * ((v+8.9d0)/5.d0) /
     x          (dexp((v+8.9d0)/5.d0) - 1.d0)

c M-current, from plast.f, with 60 mV shift
        alpham_km(i) = .02d0/(1.d0+dexp((-v-20.d0)/5.d0))
        betam_km(i) = .01d0 * dexp((-v-43.d0)/18.d0)

c T-current, from Destexhe, Neubig et al., 1998
         minf = 1.d0/(1.d0 + dexp((-v-56.d0)/6.2d0))
         hinf = 1.d0/(1.d0 + dexp((v+80.d0)/4.d0))
         taum = 0.204d0 + .333d0/(dexp((v+15.8d0)/18.2d0) +
     x                  dexp((-v-131.d0)/16.7d0))
          if (v.le.-81.d0) then
         tauh = 0.333 * dexp((v+466.d0)/66.6d0)
          else
         tauh = 9.32d0 + 0.333d0*dexp((-v-21.d0)/10.5d0)
          endif
              alpham_cat(i) = minf / taum
              betam_cat(i) = 1.d0/taum - alpham_cat(i)
              alphah_cat(i) = hinf / tauh
              betah_cat(i) = 1.d0 / tauh - alphah_cat(i)

1        CONTINUE

         do  i = 0, 639

      dalpham_naf(i) = (alpham_naf(i+1)-alpham_naf(i))/.25d0
      dbetam_naf(i) = (betam_naf(i+1)-betam_naf(i))/.25d0
      dalphah_naf(i) = (alphah_naf(i+1)-alphah_naf(i))/.25d0
      dbetah_naf(i) = (betah_naf(i+1)-betah_naf(i))/.25d0
      dalpham_kdr(i) = (alpham_kdr(i+1)-alpham_kdr(i))/.25d0
      dbetam_kdr(i) = (betam_kdr(i+1)-betam_kdr(i))/.25d0
      dalpham_ka(i) = (alpham_ka(i+1)-alpham_ka(i))/.25d0
      dbetam_ka(i) = (betam_ka(i+1)-betam_ka(i))/.25d0
      dalphah_ka(i) = (alphah_ka(i+1)-alphah_ka(i))/.25d0
      dbetah_ka(i) = (betah_ka(i+1)-betah_ka(i))/.25d0
      dalpham_k2(i) = (alpham_k2(i+1)-alpham_k2(i))/.25d0
      dbetam_k2(i) = (betam_k2(i+1)-betam_k2(i))/.25d0
      dalphah_k2(i) = (alphah_k2(i+1)-alphah_k2(i))/.25d0
      dbetah_k2(i) = (betah_k2(i+1)-betah_k2(i))/.25d0
      dalpham_km(i) = (alpham_km(i+1)-alpham_km(i))/.25d0
      dbetam_km(i) = (betam_km(i+1)-betam_km(i))/.25d0
      dalpham_kc(i) = (alpham_kc(i+1)-alpham_kc(i))/.25d0
      dbetam_kc(i) = (betam_kc(i+1)-betam_kc(i))/.25d0
      dalpham_cat(i) = (alpham_cat(i+1)-alpham_cat(i))/.25d0
      dbetam_cat(i) = (betam_cat(i+1)-betam_cat(i))/.25d0
      dalphah_cat(i) = (alphah_cat(i+1)-alphah_cat(i))/.25d0
      dbetah_cat(i) = (betah_cat(i+1)-betah_cat(i))/.25d0
      dalpham_caL(i) = (alpham_cal(i+1)-alpham_cal(i))/.25d0
      dbetam_caL(i) = (betam_cal(i+1)-betam_cal(i))/.25d0
      dalpham_ar(i) = (alpham_ar(i+1)-alpham_ar(i))/.25d0
      dbetam_ar(i) = (betam_ar(i+1)-betam_ar(i))/.25d0
       end do
2      CONTINUE

         do i = 640, 640
      dalpham_naf(i) =  dalpham_naf(i-1)
      dbetam_naf(i) =  dbetam_naf(i-1)
      dalphah_naf(i) = dalphah_naf(i-1)
      dbetah_naf(i) = dbetah_naf(i-1)
      dalpham_kdr(i) =  dalpham_kdr(i-1)
      dbetam_kdr(i) =  dbetam_kdr(i-1)
      dalpham_ka(i) =  dalpham_ka(i-1)
      dbetam_ka(i) =  dbetam_ka(i-1)
      dalphah_ka(i) =  dalphah_ka(i-1)
      dbetah_ka(i) =  dbetah_ka(i-1)
      dalpham_k2(i) =  dalpham_k2(i-1)
      dbetam_k2(i) =  dbetam_k2(i-1)
      dalphah_k2(i) =  dalphah_k2(i-1)
      dbetah_k2(i) =  dbetah_k2(i-1)
      dalpham_km(i) =  dalpham_km(i-1)
      dbetam_km(i) =  dbetam_km(i-1)
      dalpham_kc(i) =  dalpham_kc(i-1)
      dbetam_kc(i) =  dbetam_kc(i-1)
      dalpham_cat(i) =  dalpham_cat(i-1)
      dbetam_cat(i) =  dbetam_cat(i-1)
      dalphah_cat(i) =  dalphah_cat(i-1)
      dbetah_cat(i) =  dbetah_cat(i-1)
      dalpham_caL(i) =  dalpham_caL(i-1)
      dbetam_caL(i) =  dbetam_caL(i-1)
      dalpham_ar(i) =  dalpham_ar(i-1)
      dbetam_ar(i) =  dbetam_ar(i-1)
       end do   

       END

        SUBROUTINE SCORTMAJ_suppyrRS
C BRANCHED ACTIVE DENDRITES
     X             (GL,GAM,GKDR,GKA,GKC,GKAHP,GK2,GKM,
     X              GCAT,GCAL,GNAF,GNAP,GAR,
     X    CAFOR,JACOB,C,BETCHI,NEIGH,NNUM,depth,level)
c Conductances: leak gL, coupling g, delayed rectifier gKDR, A gKA,
c C gKC, AHP gKAHP, K2 gK2, M gKM, low thresh Ca gCAT, high thresh
c gCAL, fast Na gNAF, persistent Na gNAP, h or anom. rectif. gAR.
c Note VAR = equil. potential for anomalous rectifier.
c Soma = comp. 1; 10 dendrites each with 13 compartments, 6-comp. axon
c Drop "glc"-like terms, just using "gl"-like
c CAFOR corresponds to "phi" in Traub et al., 1994
c Consistent set of units: nF, mV, ms, nA, microS

       INTEGER, PARAMETER:: numcomp = 74
! numcomp here must be compatible with numcomp_suppyrRS in calling prog.
        REAL*8 C(numcomp),GL(numcomp), GAM(0:numcomp, 0:numcomp)
        REAL*8 GNAF(numcomp),GCAT(numcomp), GKAHP(numcomp)
        REAL*8 GKDR(numcomp),GKA(numcomp),GKC(numcomp)
        REAL*8 GK2(numcomp),GNAP(numcomp),GAR(numcomp)
        REAL*8 GKM(numcomp), gcal(numcomp), CDENS
        REAL*8 JACOB(numcomp,numcomp),RI_SD,RI_AXON,RM_SD,RM_AXON
        INTEGER LEVEL(numcomp)
        REAL*8 GNAF_DENS(0:12), GCAT_DENS(0:12), GKDR_DENS(0:12)
        REAL*8 GKA_DENS(0:12), GKC_DENS(0:12), GKAHP_DENS(0:12)
        REAL*8 GCAL_DENS(0:12), GK2_DENS(0:12), GKM_DENS(0:12)
        REAL*8 GNAP_DENS(0:12), GAR_DENS(0:12)
        REAL*8 RES, RINPUT, Z, ELEN(numcomp)
        REAL*8 RSOMA, PI, BETCHI(numcomp), CAFOR(numcomp)
        REAL*8 RAD(numcomp), LEN(numcomp), GAM1, GAM2
        REAL*8 RIN, D(numcomp), AREA(numcomp), RI
        INTEGER NEIGH(numcomp,10), NNUM(numcomp), i, j, k, it
C FOR ESTABLISHING TOPOLOGY OF COMPARTMENTS
        real*8 depth(12) ! depth in microns of levels 1-12, assuming soma in middle
! of layer 2/3 at depth 850 mu

        depth(1) = 850.d0
        depth(2) = 885.d0
        depth(3) = 920.d0
        depth(4) = 955.d0
        depth(5) = 825.d0
        depth(6) = 775.d0
        depth(7) = 725.d0
        depth(8) = 690.d0
        depth(9) = 655.d0
        depth(10) = 620.d0
        depth(11) = 585.d0
        depth(12) = 550.d0

        RI_SD = 250.d0
        RM_SD = 50000.d0
        RI_AXON = 100.d0
        RM_AXON = 1000.d0
        CDENS = 0.9d0

        PI = 3.14159d0

       do i = 0, 12
        gnaf_dens(i) = 10.d0
       end do
        gnaf_dens(0) = 400.d0
        gnaf_dens(1) = 150.d0
        gnaf_dens(2) =  75.d0
        gnaf_dens(5) = 100.d0
        gnaf_dens(6) =  75.d0

       do i = 0, 12
        gkdr_dens(i) = 5.d0
       end do
        gkdr_dens(0) = 400.d0
        gkdr_dens(1) = 100.d0
        gkdr_dens(2) =  75.d0
        gkdr_dens(5) = 100.d0
        gkdr_dens(6) =  75.d0

        gnap_dens(0) = 0.d0
        do i = 1, 12
          gnap_dens(i) = 0.0040d0 * gnaf_dens(i)
c         gnap_dens(i) = 0.002d0 * gnaf_dens(i)
c         gnap_dens(i) = 0.0030d0 * gnaf_dens(i)
        end do

        gcat_dens(0) = 0.d0
        do i = 1, 12
c         gcat_dens(i) = 0.5d0
          gcat_dens(i) = 0.1d0
        end do

        gcaL_dens(0) = 0.d0
        do i = 1, 6
          gcaL_dens(i) = 1.d0
        end do
        do i = 7, 12
          gcaL_dens(i) = 1.0d0
        end do

       do i = 0, 12
        gka_dens(i) = 2.d0
       end do
        gka_dens(1) = 30.d0
        gka_dens(5) = 30.d0

      do i = 0, 12
c        gkc_dens(i)  = 12.00d0
         gkc_dens(i)  =  7.50d0
c        gkc_dens(i)  =  2.00d0
c        gkc_dens(i)  =  7.00d0
      end do
         gkc_dens(0) =  0.00d0

        gkm_dens(0) = 0.d0
        do i = 1, 12
         gkm_dens(i) = 2.5d0 * 1.50d0
        end do

        do i = 0, 12
c       gk2_dens(i) = 1.d0
        gk2_dens(i) = 0.1d0
        end do

        gkahp_dens(0) = 0.d0
        do i = 1, 12
c        gkahp_dens(i) = 0.200d0
         gkahp_dens(i) = 0.100d0
c        gkahp_dens(i) = 0.050d0
        end do

        gar_dens(0) = 0.d0
        do i = 1, 12
         gar_dens(i) = 0.25d0
        end do

c       WRITE   (6,9988)
9988    FORMAT(2X,'I',4X,'NADENS',' CADENS(T)',' KDRDEN',' KAHPDE',
     X     ' KCDENS',' KADENS')
        DO 9989, I = 0, 12
c         WRITE (6,9990) I, gnaf_dens(i), gcat_dens(i), gkdr_dens(i),
c    X  gkahp_dens(i), gkc_dens(i), gka_dens(i)
9990    FORMAT(2X,I2,2X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2)
9989    CONTINUE


        level(1) = 1
        do i = 2, 13
         level(i) = 2
        end do
        do i = 14, 25
           level(i) = 3
        end do
        do i = 26, 37
           level(i) = 4
        end do
        level(38) = 5
        level(39) = 6
        level(40) = 7
        level(41) = 8
        level(42) = 8
        level(43) = 9
        level(44) = 9
        do i = 45, 52
           level(i) = 10
        end do
        do i = 53, 60
           level(i) = 11
        end do
        do i = 61, 68
           level(i) = 12
        end do

        do i =  69, 74
         level(i) = 0
        end do

c connectivity of axon
        nnum( 69) = 2
        nnum( 70) = 3
        nnum( 71) = 3
        nnum( 73) = 3
        nnum( 72) = 1
        nnum( 74) = 1
         neigh(69,1) =  1
         neigh(69,2) = 70
         neigh(70,1) = 69
         neigh(70,2) = 71
         neigh(70,3) = 73
         neigh(71,1) = 70
         neigh(71,2) = 72
         neigh(71,3) = 73
         neigh(73,1) = 70
         neigh(73,2) = 71
         neigh(73,3) = 74
         neigh(72,1) = 71
         neigh(74,1) = 73

c connectivity of SD part
          nnum(1) = 10
          neigh(1,1) = 69
          neigh(1,2) =  2
          neigh(1,3) =  3
          neigh(1,4) =  4
          neigh(1,5) =  5
          neigh(1,6) =  6
          neigh(1,7) =  7
          neigh(1,8) =  8
          neigh(1,9) =  9
          neigh(1,10) = 38

          do i = 2, 9
           nnum(i) = 2
           neigh(i,1) = 1
           neigh(i,2) = i + 12
          end do

          do i = 14, 21
            nnum(i) = 2
            neigh(i,1) = i - 12
            neigh(i,2) = i + 12
          end do

          do i = 26, 33
            nnum(i) = 1
            neigh(i,1) = i - 12
          end do

          do i = 10, 13
            nnum(i) = 2
            neigh(i,1) = 38
            neigh(i,2) = i + 12
          end do

          do i = 22, 25
            nnum(i) = 2
            neigh(i,1) = i - 12
            neigh(i,2) = i + 12
          end do

          do i = 34, 37
            nnum(i) = 1
            neigh(i,1) = i - 12
          end do

          nnum(38) = 6
          neigh(38,1) = 1
          neigh(38,2) = 39
          neigh(38,3) = 10
          neigh(38,4) = 11
          neigh(38,5) = 12
          neigh(38,6) = 13

          nnum(39) = 2
          neigh(39,1) = 38
          neigh(39,2) = 40

          nnum(40) = 3
          neigh(40,1) = 39
          neigh(40,2) = 41
          neigh(40,3) = 42

          nnum(41) = 3
          neigh(41,1) = 40
          neigh(41,2) = 42
          neigh(41,3) = 43

          nnum(42) = 3
          neigh(42,1) = 40
          neigh(42,2) = 41
          neigh(42,3) = 44

           nnum(43) = 5
           neigh(43,1) = 41
           neigh(43,2) = 45
           neigh(43,3) = 46
           neigh(43,4) = 47
           neigh(43,5) = 48

           nnum(44) = 5
           neigh(44,1) = 42
           neigh(44,2) = 49
           neigh(44,3) = 50
           neigh(44,4) = 51
           neigh(44,5) = 52

           nnum(45) = 5
           neigh(45,1) = 43
           neigh(45,2) = 53
           neigh(45,3) = 46
           neigh(45,4) = 47
           neigh(45,5) = 48

           nnum(46) = 5
           neigh(46,1) = 43
           neigh(46,2) = 54
           neigh(46,3) = 45
           neigh(46,4) = 47
           neigh(46,5) = 48

           nnum(47) = 5
           neigh(47,1) = 43
           neigh(47,2) = 55
           neigh(47,3) = 45
           neigh(47,4) = 46
           neigh(47,5) = 48

           nnum(48) = 5
           neigh(48,1) = 43
           neigh(48,2) = 56
           neigh(48,3) = 45
           neigh(48,4) = 46
           neigh(48,5) = 47

           nnum(49) = 5
           neigh(49,1) = 44
           neigh(49,2) = 57
           neigh(49,3) = 50
           neigh(49,4) = 51
           neigh(49,5) = 52

           nnum(50) = 5
           neigh(50,1) = 44
           neigh(50,2) = 58
           neigh(50,3) = 49
           neigh(50,4) = 51
           neigh(50,5) = 52

           nnum(51) = 5
           neigh(51,1) = 44
           neigh(51,2) = 59
           neigh(51,3) = 49
           neigh(51,4) = 50
           neigh(51,5) = 52

           nnum(52) = 5
           neigh(52,1) = 44
           neigh(52,2) = 60
           neigh(52,3) = 49
           neigh(52,4) = 51
           neigh(52,5) = 50

          do i = 53, 60
           nnum(i) = 2
           neigh(i,1) = i - 8
           neigh(i,2) = i + 8
          end do

          do i = 61, 68
           nnum(i) = 1
           neigh(i,1) = i - 8
          end do

c        DO 332, I = 1, 74
         DO I = 1, 74
c          WRITE(6,3330) I, NEIGH(I,1),NEIGH(I,2),NEIGH(I,3),NEIGH(I,4),
c    X NEIGH(I,5),NEIGH(I,6),NEIGH(I,7),NEIGH(I,8),NEIGH(I,9),
c    X NEIGH(I,10)
3330     FORMAT(2X,11I5)
         END DO
332      CONTINUE
c         DO 858, I = 1, 74
          DO I = 1, 74
c          DO 858, J = 1, NNUM(I)
           DO J = 1, NNUM(I)
            K = NEIGH(I,J)
            IT = 0
c           DO 859, L = 1, NNUM(K)
            DO  L = 1, NNUM(K)
             IF (NEIGH(K,L).EQ.I) IT = 1
            END DO
859         CONTINUE
             IF (IT.EQ.0) THEN
c             WRITE(6,8591) I, K
8591          FORMAT(' ASYMMETRY IN NEIGH MATRIX ',I4,I4)
              STOP
             ENDIF
          END DO
          END DO
858       CONTINUE

c length and radius of axonal compartments
c Note shortened "initial segment"
          len(69) = 25.d0
          do i = 70, 74
            len(i) = 50.d0
          end do
          rad( 69) = 0.90d0
c         rad( 69) = 0.80d0
          rad( 70) = 0.7d0
          do i = 71, 74
           rad(i) = 0.5d0
          end do

c  length and radius of SD compartments
          len(1) = 15.d0
          rad(1) =  8.d0

          do i = 2, 68
           len(i) = 50.d0
          end do

          do i = 2, 37
            rad(i) = 0.5d0
          end do

          z = 4.0d0
          rad(38) = z
          rad(39) = 0.9d0 * z
          rad(40) = 0.8d0 * z
          rad(41) = 0.5d0 * z
          rad(42) = 0.5d0 * z
          rad(43) = 0.5d0 * z
          rad(44) = 0.5d0 * z
          do i = 45, 68
           rad(i) = 0.2d0 * z
          end do


c       WRITE(6,919)
919     FORMAT('COMPART.',' LEVEL ',' RADIUS ',' LENGTH(MU)')
c       DO 920, I = 1, 74
c920      WRITE(6,921) I, LEVEL(I), RAD(I), LEN(I)
921     FORMAT(I3,5X,I2,3X,F6.2,1X,F6.1,2X,F4.3)

        DO 120, I = 1, 74
          AREA(I) = 2.d0 * PI * RAD(I) * LEN(I)
      if((i.gt.1).and.(i.le.68)) area(i) = 2.d0 * area(i)
C    CORRECTION FOR CONTRIBUTION OF SPINES TO AREA
          K = LEVEL(I)
          C(I) = CDENS * AREA(I) * (1.D-8)

           if (k.ge.1) then
          GL(I) = (1.D-2) * AREA(I) / RM_SD
           else
          GL(I) = (1.D-2) * AREA(I) / RM_AXON
           endif

          GNAF(I) = GNAF_DENS(K) * AREA(I) * (1.D-5)
          GNAP(I) = GNAP_DENS(K) * AREA(I) * (1.D-5)
          GCAT(I) = GCAT_DENS(K) * AREA(I) * (1.D-5)
          GKDR(I) = GKDR_DENS(K) * AREA(I) * (1.D-5)
          GKA(I) = GKA_DENS(K) * AREA(I) * (1.D-5)
          GKC(I) = GKC_DENS(K) * AREA(I) * (1.D-5)
          GKAHP(I) = GKAHP_DENS(K) * AREA(I) * (1.D-5)
          GKM(I) = GKM_DENS(K) * AREA(I) * (1.D-5)
          GCAL(I) = GCAL_DENS(K) * AREA(I) * (1.D-5)
          GK2(I) = GK2_DENS(K) * AREA(I) * (1.D-5)
          GAR(I) = GAR_DENS(K) * AREA(I) * (1.D-5)
c above conductances should be in microS
120           continue

         Z = 0.d0
c        DO 1019, I = 2, 68
         DO I = 2, 68
           Z = Z + AREA(I)
         END DO
1019     CONTINUE
c        WRITE(6,1020) Z
1020     FORMAT(2X,' TOTAL DENDRITIC AREA ',F7.0)

c       DO 140, I = 1, 74
        DO I = 1, 74
c       DO 140, K = 1, NNUM(I)
        DO K = 1, NNUM(I)
         J = NEIGH(I,K)
           if (level(i).eq.0) then
               RI = RI_AXON
           else
               RI = RI_SD
           endif
         GAM1 =100.d0 * PI * RAD(I) * RAD(I) / ( RI * LEN(I) )

           if (level(j).eq.0) then
               RI = RI_AXON
           else
               RI = RI_SD
           endif
         GAM2 =100.d0 * PI * RAD(J) * RAD(J) / ( RI * LEN(J) )
         GAM(I,J) = 2.d0/( (1.d0/GAM1) + (1.d0/GAM2) )
	 END DO
	 END DO

140     CONTINUE
c gam computed in microS

c       DO 299, I = 1, 74
        DO I = 1, 74
299       BETCHI(I) = .05d0
        END DO
        BETCHI( 1) =  .01d0

c       DO 300, I = 1, 74
        DO I = 1, 74
c300     D(I) = 2.D-4
300     D(I) = 5.D-4
        END DO
c       DO 301, I = 1, 74
        DO I = 1, 74
         IF (LEVEL(I).EQ.1) D(I) = 2.D-3
        END DO
301     CONTINUE
C  NOTE NOTE NOTE  (DIFFERENT FROM SWONG)


c      DO 160, I = 1, 74
       DO I = 1, 74
160     CAFOR(I) = 5200.d0 / (AREA(I) * D(I))
       END DO
C     NOTE CORRECTION

c       do 200, i = 1, 74
        do i = 1, numcomp
200     C(I) = 1000.d0 * C(I)
        end do
C     TO GO FROM MICROF TO NF.

c     DO 909, I = 1, 74
      DO I = 1, numcomp
       JACOB(I,I) = - GL(I)
c     DO 909, J = 1, NNUM(I)
      DO J = 1, NNUM(I)
         K = NEIGH(I,J)
         IF (I.EQ.K) THEN
c            WRITE(6,510) I
510          FORMAT(' UNEXPECTED SYMMETRY IN NEIGH ',I4)
         ENDIF
         JACOB(I,K) = GAM(I,K)
         JACOB(I,I) = JACOB(I,I) - GAM(I,K)
       END DO
       END DO
909   CONTINUE

c 15 Jan. 2001: make correction for c(i)
          do i = 1, numcomp
          do j = 1, numcomp
             jacob(i,j) = jacob(i,j) / c(i)
          end do
          end do

c      DO 500, I = 1, 74
       DO I = 1, 74
c       WRITE (6,501) I,C(I)
501     FORMAT(1X,I3,' C(I) = ',F7.4)
       END DO
500     CONTINUE
        END