Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)

 Download zip file 
Help downloading and running models
We are investigating how dopaminergic modulation of single channels can be combined to make the D1R possitive MSN more excitable. We also connect multiple channels to substrates of a dopamine induced subcellular cascade to highlight that the classical pathway is too slow to explain DA induced kinetics in the subsecond range (Howe and Dombeck, 2016. doi: 10.1038/nature18942)
1 . Lindroos R, Dorst MC, Du K, Filipovic M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J (2018) Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 12:3 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Axon; Channel/Receptor; Dendrite; Molecular Network; Synapse; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia; Striatum;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum spiny neuron;
Channel(s): I A; I A, slow; I Calcium; I CAN; I K; I K,Ca; I K,leak; I Krp; I Na,t; I Potassium; I R; I T low threshold; Kir;
Gap Junctions:
Receptor(s): D1; Dopaminergic Receptor; AMPA; Gaba; NMDA;
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Detailed Neuronal Models; Electrical-chemical; G-protein coupled; Membrane Properties; Neuromodulation; Multiscale; Synaptic noise;
Implementer(s): Lindroos, Robert [robert.lindroos at]; Du, Kai [kai.du at]; Keller, Daniel ; Kozlov, Alexander [akozlov at];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,t; I T low threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Calcium; I Potassium; I A, slow; I Krp; I R; Kir; Dopamine; Gaba; Glutamate;
TITLE T-type calcium current (Cav3.3)

    (mV) = (millivolt)
    (mA) = (milliamp)
    (S) = (siemens)
    (molar) = (1/liter)
    (mM) = (millimolar)
    FARADAY = (faraday) (coulomb)
    R = (k-mole) (joule/degC)

    SUFFIX cat33
    USEION cal READ cali, calo WRITE ical VALENCE 2
    RANGE pbar, ical

    pbar = 0.0 (cm/s)
    :q = 1	: room temperature 21 C
    q = 3	: body temperature 35 C

    v (mV)
    ical (mA/cm2)
    ecal (mV)
    celsius (degC)
    cali (mM)
    calo (mM)
    mtau (ms)
    htau (ms)

STATE { m h }

    SOLVE states METHOD cnexp
    ical = pbar*m*m*m*h*ghk(v, cali, calo)

    m = minf
    h = hinf

DERIVATIVE states { 
    m' = (minf-m)/mtau*q
    h' = (hinf-h)/htau*q

PROCEDURE rates() {
    minf = 1/(1+exp((v-(-81))/(-5.8)))
    mtau = (2.3+20/(1+exp((v-(-60))/9)))*3
    hinf = 1/(1+exp((v-(-78.3))/6.5))
    htau = 125+140/(1+exp((v-(-60))/3))

FUNCTION ghk(v (mV), ci (mM), co (mM)) (.001 coul/cm3) {
    LOCAL z, eci, eco
    z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
    if(z == 0) {
        z = z+1e-6
    eco = co*(z)/(exp(z)-1)
    eci = ci*(-z)/(exp(-z)-1)
    ghk = (1e-3)*2*FARADAY*(eci-eco)


Rat Cav3.2 channels were isolated and transfection of human embryonic
kidney cells was performed [1].  Electrophysiological recordings were
done in 21 C.

NEURON model by Alexander Kozlov <>. Kinetics of m3h
type was used [2-4]. Activation time constant was scaled up accordingly.

[1] Iftinca M, McKay BE, Snutch TP, McRory JE, Turner RW, Zamponi
GW (2006) Temperature dependence of T-type calcium channel
gating. Neuroscience 142(4):1031-42.

[2] Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW (2005) The
'window' T-type calcium current in brain dynamics of different behavioural
states. J Physiol 562(Pt 1):121-9.

[3] Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M,
O'Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions
and entrainment to oscillations in a computational model of the nucleus
accumbens medium spiny projection neuron. J Neurosci 25(40):9080-95.

[4] Evans RC, Maniar YM, Blackwell KT (2013) Dynamic modulation of
spike timing-dependent calcium influx during corticostriatal upstates. J
Neurophysiol 110(7):1631-45.