Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites (Bloss et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:237728
" ... Here we show that single presynaptic axons form multiple, spatially clustered inputs onto the distal, but not proximal, dendrites of CA1 pyramidal neurons. These compound connections exhibit ultrastructural features indicative of strong synapses and occur much more commonly in entorhinal than in thalamic afferents. Computational simulations revealed that compound connections depolarize dendrites in a biophysically efficient manner, owing to their inherent spatiotemporal clustering. ..."
Reference:
1 . Bloss EB, Cembrowski MS, Karsh B, Colonell J, Fetter RD, Spruston N (2018) Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. Nat Neurosci 21:353-363 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell;
/
BlossEtAl2018
readme.html
dists.mod *
eff.mod *
gScale.mod
id.mod *
kad.mod *
kap.mod *
kdr.mod *
na3.mod *
nmdaSyn.mod
syns.mod *
addChannels.hoc *
addSpines.hoc
addSynapses.hoc
buildCell.hoc
channelParameters.hoc *
createBiophysics.hoc
createMorphology.hoc
createPlots.hoc
createPointers.hoc
doAnalysis.hoc
getBranchOrder.hoc *
idMorph.hoc
initializationAndRun.hoc
loadMorph.hoc
mosinit.hoc *
processMorph.hoc
proofreadMorph.hoc
resetNSeg.hoc *
screenshot.png
simParameters.hoc
singleSim.hoc
singleSimDist.hoc
spineGeom.hoc
spineShaftConc.hoc
start.hoc
trackVoltages.hoc
twinApical.swc *
varyDistribution.hoc
varySpaceTime.hoc
                            
objref dxs,dts
dxs = new Vector(1)
dxs.x[0] = 0.5

objref dendSegMax
objref peakVs
objref parMax
peakVs = new Vector(dxs.size())

// 1: linear AMPA only
// 2: linear AMPA + NMDA
// 3: distributed AMPA only
// 4: distributed AMPA + NMDA
// 5: concentrated AMPA only
// 6: concentrated AMPA + NMDA
theCase = 6

if(theCase==1){
	doubSyn1=0
	doSyn2=0
	weightAmpa = 0.00013
	weightNmda = 0
}
if(theCase==2){
	doubSyn1=0
	doSyn2=0
	weightAmpa = 0.00012
	weightNmda = 0.00012
}
if(theCase==3){
	doubSyn1=0
	doSyn2=1
	weightAmpa = 0.00013
	weightNmda = 0
}
if(theCase==4){
	doubSyn1=0
	doSyn2=1
	weightAmpa = 0.00012
	weightNmda = 0.00012
}
if(theCase==5){
	doubSyn1=1
	doSyn2=0
	weightAmpa = 0.00013
	weightNmda = 0
}
if(theCase==6){
	doubSyn1=1
	doSyn2=0
	weightAmpa = 0.00012
	weightNmda = 0.00012
}
	
objref curOut
amp1 = 1+doubSyn1

for iii=0,dxs.size()-1{
	// Run.
	initChannels()
	initSynapses(synStart,synStart)
	
	//moveSpines(dendLoc,dxs.x[iii]) // keep spine 1 fixed, move spine 2
	updatePointers()
	initSynapticWeight(amp1*weightAmpa,doSyn2*weightAmpa,amp1*weightNmda,doSyn2*weightNmda)
	init()
	run()
	
	// Analyse results.
	maxHead1 = vHead[0].max()
	maxHead2 = vHead[1].max()
	maxNeck1 = vNeck[0].max()
	maxNeck2 = vNeck[1].max()
	
	dendSegMax = new Vector(nVDend)
	for ii=0,nVDend-1{
		dendSegMax.x[ii] = vDend[ii].max()
	}

	dendMax = vPar[0].max()
	dendMax = dendMax - v_init // remove baseline	
	
	
	peakVs.x[iii] = dendMax
		
}