Purkinje cell: Synaptic activation predicts voltage control of burst-pause (Masoli & D'Angelo 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:239421
"The dendritic processing in cerebellar Purkinje cells (PCs), which integrate synaptic inputs coming from hundreds of thousands granule cells and molecular layer interneurons, is still unclear. Here we have tested a leading hypothesis maintaining that the significant PC output code is represented by burst-pause responses (BPRs), by simulating PC responses in a biophysically detailed model that allowed to systematically explore a broad range of input patterns. BPRs were generated by input bursts and were more prominent in Zebrin positive than Zebrin negative (Z+ and Z-) PCs. Different combinations of parallel fiber and molecular layer interneuron synapses explained type I, II and III responses observed in vivo. BPRs were generated intrinsically by Ca-dependent K channel activation in the somato-dendritic compartment and the pause was reinforced by molecular layer interneuron inhibition. BPRs faithfully reported the duration and intensity of synaptic inputs, such that synaptic conductance tuned the number of spikes and release probability tuned their regularity in the millisecond range. ..."
Reference:
1 . Masoli S, D'Angelo E (2017) Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front Cell Neurosci 11:278 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Synapse;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell;
Channel(s): I Potassium; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Bursting;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; I K,Ca; I Potassium;
/
Purkinjecell_2017
mod_files
Cav2_1.mod *
Cav3_1.mod *
Cav3_2.mod *
Cav3_3.mod *
cdp5.mod *
HCN1_Angeloetal2007.mod *
Kca11.mod *
Kca22.mod *
Kca31.mod *
Kir23.mod *
Kv11.mod *
Kv15.mod *
Kv33.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
Nav16.mod *
PC_Gaba_det_vi_alfa1.mod
PURKINJE_Ampa_det_vi.mod
UBC_TRP.mod
                            
TITLE Cerebellum Granule Cell Model

COMMENT
	Reference: Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells:Experimental
	Evidence and Modeling of a Slow K+-Dependent Mechanism
	Egidio D'Angelo,Thierry Nieus,Arianna Maffei,Simona Armano,Paola Rossi,Vanni Taglietti,
	Andrea Fontana and Giovanni Naldi

Suffix from Ubc_Kir to Kir2_3
ENDCOMMENT
 
NEURON { 
	SUFFIX Kir2_3
	USEION k READ ek WRITE ik 
	RANGE gkbar, ik, g, alpha_d, beta_d, ek
	RANGE Aalpha_d, Kalpha_d, V0alpha_d
	RANGE Abeta_d, Kbeta_d, V0beta_d
	RANGE d_inf, tau_d 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	Aalpha_d = 0.13289 (/ms)

	
	Kalpha_d = -24.3902 (mV)

	V0alpha_d = -83.94 (mV)
	Abeta_d = 0.16994 (/ms)

	
	Kbeta_d = 35.714 (mV)

	V0beta_d = -83.94 (mV)
	v (mV) 
	gkbar = 0.0009 (mho/cm2) 
	ek (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	d 
} 

ASSIGNED { 
	ik (mA/cm2) 
	d_inf 
	tau_d (ms) 
	g (mho/cm2) 
	alpha_d (/ms) 
	beta_d (/ms) 
} 
 
INITIAL { 
	rate(v) 
	d = d_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit
	g = gkbar*d   
	ik = g*(v - ek) 
	alpha_d = alp_d(v) 
	beta_d = bet_d(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	d' =(d_inf - d)/tau_d 
} 
 
FUNCTION alp_d(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	alp_d = Q10*Aalpha_d*exp((v-V0alpha_d)/Kalpha_d) 
} 
 
FUNCTION bet_d(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	bet_d = Q10*Abeta_d*exp((v-V0beta_d)/Kbeta_d) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_d, b_d 
	TABLE d_inf, tau_d  
	DEPEND Aalpha_d, Kalpha_d, V0alpha_d, 
	       Abeta_d, Kbeta_d, V0beta_d, celsius FROM -100 TO 100 WITH 200 
	a_d = alp_d(v)  
	b_d = bet_d(v) 
	tau_d = 1/(a_d + b_d) 
	d_inf = a_d/(a_d + b_d) 
}