Purkinje cell: Synaptic activation predicts voltage control of burst-pause (Masoli & D'Angelo 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:239421
"The dendritic processing in cerebellar Purkinje cells (PCs), which integrate synaptic inputs coming from hundreds of thousands granule cells and molecular layer interneurons, is still unclear. Here we have tested a leading hypothesis maintaining that the significant PC output code is represented by burst-pause responses (BPRs), by simulating PC responses in a biophysically detailed model that allowed to systematically explore a broad range of input patterns. BPRs were generated by input bursts and were more prominent in Zebrin positive than Zebrin negative (Z+ and Z-) PCs. Different combinations of parallel fiber and molecular layer interneuron synapses explained type I, II and III responses observed in vivo. BPRs were generated intrinsically by Ca-dependent K channel activation in the somato-dendritic compartment and the pause was reinforced by molecular layer interneuron inhibition. BPRs faithfully reported the duration and intensity of synaptic inputs, such that synaptic conductance tuned the number of spikes and release probability tuned their regularity in the millisecond range. ..."
Reference:
1 . Masoli S, D'Angelo E (2017) Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front Cell Neurosci 11:278 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Synapse;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell;
Channel(s): I Potassium; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Bursting;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; I K,Ca; I Potassium;
/
Purkinjecell_2017
mod_files
Cav2_1.mod *
Cav3_1.mod *
Cav3_2.mod *
Cav3_3.mod *
cdp5.mod *
HCN1_Angeloetal2007.mod *
Kca11.mod *
Kca22.mod *
Kca31.mod *
Kir23.mod *
Kv11.mod *
Kv15.mod *
Kv33.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
Nav16.mod *
PC_Gaba_det_vi_alfa1.mod
PURKINJE_Ampa_det_vi.mod
UBC_TRP.mod
                            
TITLE SK2 multi-state model Cerebellum Golgi Cell Model

COMMENT

Author:Sergio Solinas, Lia Forti, Egidio DAngelo
Based on data from: Hirschberg, Maylie, Adelman, Marrion J Gen Physiol 1998
Last revised: May 2007

Published in:
             Sergio M. Solinas, Lia Forti, Elisabetta Cesana, 
             Jonathan Mapelli, Erik De Schutter and Egidio D`Angelo (2008)
             Computational reconstruction of pacemaking and intrinsic 
             electroresponsiveness in cerebellar golgi cells
             Frontiers in Cellular Neuroscience 2:2

Suffix from SK2 to Kca2_2

ENDCOMMENT

NEURON{
	SUFFIX Kca2_2
	USEION ca READ cai
	USEION k READ ek WRITE ik 
	RANGE gkbar, g, ik, tcorr
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}

PARAMETER {
	celsius  (degC)
	cai (mM)
	gkbar = 0.038 (mho/cm2)
	Q10 = 3 (1)
	diff = 3 (1) : diffusion factor

: rates ca-indipendent
	invc1 = 80e-3  ( /ms)
	invc2 = 80e-3  ( /ms)
	invc3 = 200e-3 ( /ms)

	invo1 = 1      ( /ms)
	invo2 = 100e-3 ( /ms)
	diro1 = 160e-3 ( /ms)
	diro2 = 1.2    ( /ms)

: rates ca-dipendent
	dirc2 = 200 ( /ms-mM )
	dirc3 = 160 ( /ms-mM )
	dirc4 = 80  ( /ms-mM )

}

ASSIGNED{ 
	v	(mV) 
	ek	(mV) 
	g	(mho/cm2) 
	ik	(mA/cm2) 
	invc1_t  ( /ms)
	invc2_t  ( /ms)
	invc3_t  ( /ms)
	invo1_t  ( /ms)
	invo2_t  ( /ms)
	diro1_t  ( /ms)
	diro2_t  ( /ms)
	dirc2_t  ( /ms-mM)
	dirc3_t  ( /ms-mM)
	dirc4_t  ( /ms-mM)
	tcorr	 (1)

	dirc2_t_ca  ( /ms)
	dirc3_t_ca  ( /ms)
	dirc4_t_ca  ( /ms)
} 

STATE {
	c1
	c2
	c3
	c4
	o1
	o2
}

BREAKPOINT{ 
	SOLVE kin METHOD sparse 
	g = gkbar*(o1+o2)	:(mho/cm2)
	ik = g*(v-ek)		:(mA/cm2)
} 

INITIAL{
	rate(celsius)
	SOLVE kin STEADYSTATE sparse
} 

KINETIC kin{ 
	rates(cai/diff) 
	~c1<->c2 (dirc2_t_ca, invc1_t) 
	~c2<->c3 (dirc3_t_ca, invc2_t) 
	~c3<->c4 (dirc4_t_ca, invc3_t) 
	~c3<->o1 (diro1_t, invo1_t) 
	~c4<->o2 (diro2_t, invo2_t) 
	CONSERVE c1+c2+c3+c4+o2+o1=1 
} 

FUNCTION temper (Q10, celsius (degC)) {
	temper = Q10^((celsius -23(degC)) / 10(degC)) 
}

PROCEDURE rates(cai(mM)){
	dirc2_t_ca = dirc2_t*cai
	dirc3_t_ca = dirc3_t*cai
	dirc4_t_ca = dirc4_t*cai 
} 

PROCEDURE rate (celsius(degC)) {
	tcorr = temper (Q10,celsius)
	invc1_t = invc1*tcorr  
	invc2_t = invc2*tcorr
	invc3_t = invc3*tcorr 
	invo1_t = invo1*tcorr 
	invo2_t = invo2*tcorr 
	diro1_t = diro1*tcorr 
	diro2_t = diro2*tcorr 
	dirc2_t = dirc2*tcorr
	dirc3_t = dirc3*tcorr
	dirc4_t = dirc4*tcorr
}