Gamma genesis in the basolateral amygdala (Feng et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:247968
Using in vitro and in vivo data we develop the first large-scale biophysically and anatomically realistic model of the basolateral amygdala nucleus (BL), which reproduces the dynamics of the in vivo local field potential (LFP). Significantly, it predicts that BL intrinsically generates the transient gamma oscillations observed in vivo. The model permitted exploration of the poorly understood synaptic mechanisms underlying gamma genesis in BL, and the model's ability to compute LFPs at arbitrary numbers of recording sites provided insights into the characteristics of the spatial properties of gamma bursts. Furthermore, we show how gamma synchronizes principal cells to overcome their low firing rates while simultaneously promoting competition, potentially impacting their afferent selectivity and efferent drive, and thus emotional behavior.
Reference:
1 . Feng F, Headley DB , Amir A, Kanta V, Chen Z, Pare D, Nair S (2019) Gamma oscillations in the basolateral amygdala: biophysical mechanisms and computational consequences eNeuro
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Extracellular; Synapse; Dendrite; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Amygdala;
Cell Type(s): Hodgkin-Huxley neuron;
Channel(s): I Na,t; I L high threshold; I A; I M; I Sodium; I Calcium; I Potassium; I_AHP; Ca pump; I h; I Na,p; I K;
Gap Junctions: Gap junctions;
Receptor(s): AMPA; NMDA; Gaba; Dopaminergic Receptor;
Gene(s):
Transmitter(s): Dopamine; Norephinephrine;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Gamma oscillations; Short-term Synaptic Plasticity;
Implementer(s): Feng, Feng [ffvxb at mail.missouri.edu];
Search NeuronDB for information about:  AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,p; I Na,t; I L high threshold; I A; I K; I M; I h; I Sodium; I Calcium; I Potassium; I_AHP; Ca pump; Dopamine; Norephinephrine;
/
FengEtAl2019
input
readme.txt
bg2pyr.mod
ca.mod *
cadyn.mod *
cal2.mod *
capool.mod
function_TMonitor.mod *
gap.mod *
Gfluct_new_exc.mod
Gfluct_new_inh.mod
h.mod *
halfgap.mod
im.mod *
interD2interD_STFD_new.mod
interD2pyrD_STFD_new.mod
kadist.mod
kaprox.mod *
kdrca1.mod *
kdrca1DA.mod *
kdrinter.mod *
leak.mod *
leakDA.mod *
leakinter.mod *
na3.mod *
na3DA.mod *
nainter.mod *
nap.mod *
nat.mod *
pyrD2interD_STFD.mod
pyrD2pyrD_STFD_new.mod
sahp.mod *
sahpNE.mod *
vecevent.mod
xtra.mod
xtra_imemrec.mod
BL_main.hoc
BLcells_template_LFP_segconsider_all_Iinject_recordingimembrane.hoc
function_calcconduc.hoc
function_ConnectInputs_invivo_op.hoc
function_ConnectInternal_gj_simplify.hoc
function_ConnectInternal_simplify_online_op.hoc
function_ConnectTwoCells.hoc
function_LoadMatrix.hoc
function_NetStimOR.hoc *
function_TimeMonitor.hoc *
interneuron_template_gj_LFP_Iinject_recordingimembrane.hoc
                            
TITLE Fluctuating conductances

COMMENT
-----------------------------------------------------------------------------

	Fluctuating conductance model for synaptic bombardment
	======================================================

THEORY

  Synaptic bombardment is represented by a stochastic model containing
  two fluctuating conductances g_e(t) and g_i(t) descibed by:

     Isyn = g_e(t) * [V - E_e] + g_i(t) * [V - E_i]
     d g_e / dt = -(g_e - g_e0) / tau_e + sqrt(D_e) * Ft
     d g_i / dt = -(g_i - g_i0) / tau_i + sqrt(D_i) * Ft

  where E_e, E_i are the reversal potentials, g_e0, g_i0 are the average
  conductances, tau_e, tau_i are time constants, D_e, D_i are noise diffusion
  coefficients and Ft is a gaussian white noise of unit standard deviation.

  g_e and g_i are described by an Ornstein-Uhlenbeck (OU) stochastic process
  where tau_e and tau_i represent the "correlation" (if tau_e and tau_i are 
  zero, g_e and g_i are white noise).  The estimation of OU parameters can
  be made from the power spectrum:

     S(w) =  2 * D * tau^2 / (1 + w^2 * tau^2)

  and the diffusion coeffient D is estimated from the variance:

     D = 2 * sigma^2 / tau


NUMERICAL RESOLUTION

  The numerical scheme for integration of OU processes takes advantage 
  of the fact that these processes are gaussian, which led to an exact
  update rule independent of the time step dt (see Gillespie DT, Am J Phys 
  64: 225, 1996):

     x(t+dt) = x(t) * exp(-dt/tau) + A * N(0,1)

  where A = sqrt( D*tau/2 * (1-exp(-2*dt/tau)) ) and N(0,1) is a normal
  random number (avg=0, sigma=1)


IMPLEMENTATION

  This mechanism is implemented as a nonspecific current defined as a
  point process.


PARAMETERS

  The mechanism takes the following parameters:

     E_e = 0  (mV)		: reversal potential of excitatory conductance
     E_i = -75 (mV)		: reversal potential of inhibitory conductance

     g_e0 = 0.0121 (umho)	: average excitatory conductance
     g_i0 = 0.0573 (umho)	: average inhibitory conductance

     std_e = 0.0030 (umho)	: standard dev of excitatory conductance
     std_i = 0.0066 (umho)	: standard dev of inhibitory conductance

     tau_e = 2.728 (ms)		: time constant of excitatory conductance
     tau_i = 10.49 (ms)		: time constant of inhibitory conductance


Gfluct2: conductance cannot be negative


REFERENCE

  Destexhe, A., Rudolph, M., Fellous, J-M. and Sejnowski, T.J.  
  Fluctuating synaptic conductances recreate in-vivo--like activity in
  neocortical neurons. Neuroscience 107: 13-24 (2001).

  (electronic copy available at http://cns.iaf.cnrs-gif.fr)


  A. Destexhe, 1999

-----------------------------------------------------------------------------
ENDCOMMENT



INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS Gfluct2_inh
	RANGE g_e, g_i, E_e, E_i, g_e0, g_i0, g_e1, g_i1
	RANGE std_e, std_i, tau_e, tau_i, D_e, D_i
	RANGE new_seed,i_inh
	NONSPECIFIC_CURRENT i_inh
	THREADSAFE
	POINTER randObjPtr
}

UNITS {
	(nA) = (nanoamp) 
	(mV) = (millivolt)
	(umho) = (micromho)
}

PARAMETER {
	dt		(ms)

	E_e	= 0 	(mV)	: reversal potential of excitatory conductance
	E_i	= -75 	(mV)	: reversal potential of inhibitory conductance

	g_e0	= 0.0121 (umho)	: average excitatory conductance
	g_i0	= 0.0573 (umho)	: average inhibitory conductance

	std_e	= 0.0030 (umho)	: standard dev of excitatory conductance
	std_i	= 0.0066 (umho)	: standard dev of inhibitory conductance

	tau_e	= 2.728	(ms)	: time constant of excitatory conductance
	tau_i	= 10.49	(ms)	: time constant of inhibitory conductance
}

ASSIGNED {
    noise
	v	(mV)		: membrane voltage
	i 	(nA)		: fluctuating current
	g_e	(umho)		: total excitatory conductance
	g_i	(umho)		: total inhibitory conductance
	g_e1	(umho)		: fluctuating excitatory conductance
	g_i1	(umho)		: fluctuating inhibitory conductance
	D_e	(umho umho /ms) : excitatory diffusion coefficient
	D_i	(umho umho /ms) : inhibitory diffusion coefficient
	exp_e
	exp_i
	amp_e	(umho)
	amp_i	(umho)
	randObjPtr
	i_exc (nA)
	i_inh  (nA)
}

INITIAL {
	g_e1 = 0
	g_i1 = 0
	if(tau_e != 0) {
		D_e = 2 * std_e * std_e / tau_e
		exp_e = exp(-dt/tau_e)
		amp_e = std_e * sqrt( (1-exp(-2*dt/tau_e)) )
	}
	if(tau_i != 0) {
		D_i = 2 * std_i * std_i / tau_i
		exp_i = exp(-dt/tau_i)
		amp_i = std_i * sqrt( (1-exp(-2*dt/tau_i)) )
	}
}

BEFORE BREAKPOINT {
    noise = randGen()
}

BREAKPOINT {

	SOLVE oup
	if(tau_e==0) {
	   g_e = std_e * noise
	   
	}
	if(tau_i==0) {
	   g_i = std_i * noise
	}
	g_e = g_e0 + g_e1
	if(g_e < 0) { g_e = 0 }
	g_i = g_i0 + g_i1
	if(g_i < 0) { g_i = 0 }
	:i_exc=g_e * (v - E_e)
	i_inh=g_i * (v - E_i)
	:i = g_e * (v - E_e) + g_i * (v - E_i)
	:i = i_exc + i_inh
}


PROCEDURE oup() {		: use Scop function normrand(mean, std_dev)
   if(tau_e!=0) {
	g_e1 =  exp_e * g_e1 + amp_e * noise
	
	:printf("%g \n", g_e1)
	
   }
   if(tau_i!=0) {
	g_i1 =  exp_i * g_i1 + amp_i * noise
	:printf("%g \n", g_i1)


   }
}


VERBATIM
#ifndef NRN_VERSION_GTEQ_8_2_0
double nrn_random_pick(void* r);
void* nrn_random_arg(int argpos);
#define RANDCAST
#else
#define RANDCAST (Rand*)
#endif
ENDVERBATIM

FUNCTION randGen() {
VERBATIM
   if (_p_randObjPtr) {
      /*
      :Supports separate independent but reproducible streams for
      : each instance. However, the corresponding hoc Random
      : distribution MUST be set to Random.normal(0,1)
      */
      _lrandGen = nrn_random_pick(RANDCAST _p_randObjPtr);
   }else{
      hoc_execerror("Random object ref not set correctly for randObjPtr"," only via hoc Random");
   }
ENDVERBATIM
}

PROCEDURE setRandObj() {
VERBATIM
   void** pv4 = (void**)(&_p_randObjPtr);
   if (ifarg(1)) {
      *pv4 = nrn_random_arg(1);
   }else{
      *pv4 = (void*)0;
   }
ENDVERBATIM
}