Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:249705
Our model was built on a reconstructed Layer 5 pyramidal neuron of the rat medial prefrontal cortex, and constrained by 4 sets of experimental data: (i) voltage waveforms obtained at the site of the glutamatergic input in distal basal dendrite, including initial sodium spikelet, fast rise, plateau phase and abrupt collapse of the plateau; (ii) a family of voltage traces describing dendritic membrane responses to gradually increasing intensity of glutamatergic stimulation; (iii) voltage waveforms of backpropagating action potentials in basal dendrites (Antic, 2003); and (iv) the change of backpropagating action potential amplitude in response to drugs that block Na+ or K+ channels (Acker and Antic, 2009). Both, synaptic AMPA/NMDA and extrasynaptic NMDA inputs were placed on basal dendrites to model the induction of local regenerative potentials termed "glutamate-mediated dendritic plateau potentials". The active properties of the cell were tuned to match the voltage waveform, amplitude and duration of experimentally observed plateau potentials. The effects of input location, receptor conductance, channel properties and membrane time constant during plateau were explored. The new model predicted that during dendritic plateau potential the somatic membrane time constant is reduced. This and other model predictions were then tested in real neurons. Overall, the results support our theoretical framework that dendritic plateau potentials bring neuronal cell body into a depolarized state ("UP state"), which lasts 200 - 500 ms, or more. Plateau potentials profoundly change neuronal state -- a plateau potential triggered in one basal dendrite depolarizes the soma and shortens membrane time constant, making the cell more susceptible to action potential firing triggered by other afferent inputs. Plateau potentials may allow cortical pyramidal neurons to tune into ongoing network activity and potentially enable synchronized firing, to form active neural ensembles.
Reference:
1 . Gao PP, Graham JW, Zhou WL, Jang J, Angulo SL, Dura-Bernal S, Hines ML, Lytton W, Antic SD (2020) Local Glutamate-Mediated Dendritic Plateau Potentials Change the State of the Cortical Pyramidal Neuron. J Neurophysiol [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Prefrontal cortex (PFC); Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I A; I K; I h; I K,Ca;
Gap Junctions:
Receptor(s): Glutamate; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Active Dendrites; Calcium dynamics; Axonal Action Potentials; Dendritic Bistability; Detailed Neuronal Models; Membrane Properties; Synaptic Integration;
Implementer(s): Antic, Srdjan [antic at neuron.uchc.edu]; Gao, Peng [peng at uchc.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; NMDA; Glutamate; I A; I K; I h; I K,Ca; Glutamate;
/
plateau-potentials
mod
x86_64
ampa.mod *
ca.mod *
Ca_HVA.mod *
Ca_LVAst.mod *
Cad.mod *
CaDynamics_E2.mod *
CaT.mod *
epsp.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
h_kole.mod *
h_migliore.mod *
Ih.mod *
IL.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
kadist.mod *
kaprox.mod *
kBK.mod *
kv.mod *
na.mod
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
NMDA.mod *
NMDAeee.mod
NMDAmajor.mod
PlateauConductance.mod *
SK_E2.mod *
SKv3_1.mod *
vecstim.mod *
vmax.mod *
ghk.inc *
                            
TITLE minimal model of GABAa receptors

COMMENT
-----------------------------------------------------------------------------

	Minimal kinetic model for GABA-A receptors
	==========================================

  Model of Destexhe, Mainen & Sejnowski, 1994:

	(closed) + T <-> (open)

  The simplest kinetics are considered for the binding of transmitter (T)
  to open postsynaptic receptors.   The corresponding equations are in
  similar form as the Hodgkin-Huxley model:

	dr/dt = alpha * [T] * (1-r) - beta * r

	I = gmax * [open] * (V-Erev)

  where [T] is the transmitter concentration and r is the fraction of 
  receptors in the open form.

  If the time course of transmitter occurs as a pulse of fixed duration,
  then this first-order model can be solved analytically, leading to a very
  fast mechanism for simulating synaptic currents, since no differential
  equation must be solved (see Destexhe, Mainen & Sejnowski, 1994).

-----------------------------------------------------------------------------

  Based on voltage-clamp recordings of GABAA receptor-mediated currents in rat
  hippocampal slices (Otis and Mody, Neuroscience 49: 13-32, 1992), this model
  was fit directly to experimental recordings in order to obtain the optimal
  values for the parameters (see Destexhe, Mainen and Sejnowski, 1996).

-----------------------------------------------------------------------------

  This mod file includes a mechanism to describe the time course of transmitter
  on the receptors.  The time course is approximated here as a brief pulse
  triggered when the presynaptic compartment produces an action potential.
  The pointer "pre" represents the voltage of the presynaptic compartment and
  must be connected to the appropriate variable in oc.

-----------------------------------------------------------------------------

  See details in:

  Destexhe, A., Mainen, Z.F. and Sejnowski, T.J.  An efficient method for
  computing synaptic conductances based on a kinetic model of receptor binding
  Neural Computation 6: 10-14, 1994.  

  Destexhe, A., Mainen, Z.F. and Sejnowski, T.J.  Kinetic models of 
  synaptic transmission.  In: Methods in Neuronal Modeling (2nd edition; 
  edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1996.


  Written by Alain Destexhe, Laval University, 1995

-----------------------------------------------------------------------------
ENDCOMMENT

NEURON {
	POINT_PROCESS GABAa
	RANGE R, g, gmax 
	NONSPECIFIC_CURRENT i
	GLOBAL Cmax, Cdur, Alpha, Beta, Erev, Rinf, Rtau
	RANGE i
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
	(mM) = (milli/liter)
}

PARAMETER {

	Cmax	= 1	(mM)		: max transmitter concentration
	Cdur	= 1	(ms)		: transmitter duration (rising phase)
	Alpha	= 5	(/ms mM)	: forward (binding) rate
	Beta	= 0.18	(/ms)		: backward (unbinding) rate
	Erev	= -80	(mV)		: reversal potential
}


ASSIGNED {
	v		(mV)		: postsynaptic voltage
	i 		(nA)		: current = g*(v - Erev)
	g 		(umho)		: conductance
	Rinf				: steady state channels open
	Rtau		(ms)		: time constant of channel binding
        synon
       	gmax
}

STATE {Ron Roff}



INITIAL {

	Rinf = Cmax*Alpha / (Cmax*Alpha + Beta)
	Rtau = 1 / ((Alpha * Cmax) + Beta)
	synon = 0
}

BREAKPOINT {
	SOLVE release METHOD cnexp
	g = (Ron + Roff)*1(umho)
	i = g*(v - Erev)
}

DERIVATIVE release {
	Ron' = (synon*Rinf - Ron)/Rtau
	Roff' = -Beta*Roff
}

: following supports both saturation from single input and
: summation from multiple inputs
: if spike occurs during CDur then new off time is t + CDur
: ie. transmitter concatenates but does not summate
: Note: automatic initialization of all reference args to 0 except first

NET_RECEIVE(weight, on, nspike, r0, t0 (ms)) {
	: flag is an implicit argument of NET_RECEIVE and  normally 0
        if (flag == 0) { : a spike, so turn on if not already in a Cdur pulse
		nspike = nspike + 1
		if (!on) {
			r0 = r0*exp(-Beta*(t - t0))
			t0 = t
			on = 1
			synon = synon + weight
			state_discontinuity(Ron, Ron + r0)
			state_discontinuity(Roff, Roff - r0)
		}
		: come again in Cdur with flag = current value of nspike
		net_send(Cdur, nspike)
        }
	if (flag == nspike) { : if this associated with last spike then turn off
		r0 = weight*Rinf + (r0 - weight*Rinf)*exp(-(t - t0)/Rtau)
		t0 = t
		synon = synon - weight
		state_discontinuity(Ron, Ron - r0)
		state_discontinuity(Roff, Roff + r0)
		on = 0
	}
gmax=weight
}