Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:249705
Our model was built on a reconstructed Layer 5 pyramidal neuron of the rat medial prefrontal cortex, and constrained by 4 sets of experimental data: (i) voltage waveforms obtained at the site of the glutamatergic input in distal basal dendrite, including initial sodium spikelet, fast rise, plateau phase and abrupt collapse of the plateau; (ii) a family of voltage traces describing dendritic membrane responses to gradually increasing intensity of glutamatergic stimulation; (iii) voltage waveforms of backpropagating action potentials in basal dendrites (Antic, 2003); and (iv) the change of backpropagating action potential amplitude in response to drugs that block Na+ or K+ channels (Acker and Antic, 2009). Both, synaptic AMPA/NMDA and extrasynaptic NMDA inputs were placed on basal dendrites to model the induction of local regenerative potentials termed "glutamate-mediated dendritic plateau potentials". The active properties of the cell were tuned to match the voltage waveform, amplitude and duration of experimentally observed plateau potentials. The effects of input location, receptor conductance, channel properties and membrane time constant during plateau were explored. The new model predicted that during dendritic plateau potential the somatic membrane time constant is reduced. This and other model predictions were then tested in real neurons. Overall, the results support our theoretical framework that dendritic plateau potentials bring neuronal cell body into a depolarized state ("UP state"), which lasts 200 - 500 ms, or more. Plateau potentials profoundly change neuronal state -- a plateau potential triggered in one basal dendrite depolarizes the soma and shortens membrane time constant, making the cell more susceptible to action potential firing triggered by other afferent inputs. Plateau potentials may allow cortical pyramidal neurons to tune into ongoing network activity and potentially enable synchronized firing, to form active neural ensembles.
Reference:
1 . Gao PP, Graham JW, Zhou WL, Jang J, Angulo SL, Dura-Bernal S, Hines ML, Lytton W, Antic SD (2020) Local Glutamate-Mediated Dendritic Plateau Potentials Change the State of the Cortical Pyramidal Neuron. J Neurophysiol [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Prefrontal cortex (PFC); Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I A; I K; I h; I K,Ca;
Gap Junctions:
Receptor(s): Glutamate; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Active Dendrites; Calcium dynamics; Axonal Action Potentials; Dendritic Bistability; Detailed Neuronal Models; Membrane Properties; Synaptic Integration;
Implementer(s): Antic, Srdjan [antic at neuron.uchc.edu]; Gao, Peng [peng at uchc.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; NMDA; Glutamate; I A; I K; I h; I K,Ca; Glutamate;
/
plateau-potentials
mod
x86_64
ampa.mod *
ca.mod *
Ca_HVA.mod *
Ca_LVAst.mod *
Cad.mod *
CaDynamics_E2.mod *
CaT.mod *
epsp.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
h_kole.mod *
h_migliore.mod *
Ih.mod *
IL.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
kadist.mod *
kaprox.mod *
kBK.mod *
kv.mod *
na.mod
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
NMDA.mod *
NMDAeee.mod
NMDAmajor.mod
PlateauConductance.mod *
SK_E2.mod *
SKv3_1.mod *
vecstim.mod *
vmax.mod *
ghk.inc *
                            
TITLE I-h channel from Magee 1998 for distal dendrites
: default values are for dendrites and low Na
: plus leakage, M.Migliore Mar 2010

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
    ehd = -30 		(mV)
	celsius 	(degC)
	gbar=.0001 	(mho/cm2)
    vhalfl=-90   	(mV)
    vhalft=-75   	(mV)
    a0t=0.0046      	(/ms)
    zetal=4    	(1)
    zetat=2.2    	(1)
    gmt=.4   	(1)
	q10=4.5
	qtl=1
	clk=0
	elk = -70 (mV)
}


NEURON {
	THREADSAFE SUFFIX hd
	NONSPECIFIC_CURRENT i
	NONSPECIFIC_CURRENT lk
        RANGE gbar, vhalfl, elk, clk, glk
        GLOBAL linf,taul
}


STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
	lk (mA/cm2)
        linf
        taul
        ghd
	glk
}

INITIAL {
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = gbar*l
	i = ghd*(v-ehd)
	lk = clk*gbar*(v-elk)
}


FUNCTION alpl(v(mV)) {
  alpl = exp(0.0378*zetal*(v-vhalfl))
}

FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft))
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft))
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1+ alpl(v))
        taul = bett(v)/(qtl*qt*a0t*(1+a))
}