Factors contribution to GDP-induced [Cl-]i transients (Lombardi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:253369
This models are used to evaluate which factors influence the GDP (giant depolarizing potential) induced [Cl-]I transients based on a initial model of P. Jedlicka
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2019) Interactions Between Membrane Resistance, GABA-A Receptor Properties, Bicarbonate Dynamics and Cl-Transport Shape Activity-Dependent Changes of Intracellular Cl- Concentration Int J of Mol Sci [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite; Synapse;
Brain Region(s)/Organism: Mouse; Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; Gaba;
/
LombardiEtAl2019
Isolated_Dendrite_gPas__Fig1
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
VDpas.mod *
vecevent.mod *
cell_isolated_dendrite.hoc
GABA-Stim_long_isolated_dendrite.hoc
GABA-Stim_PSC_isolated_dendrite.hoc
GABA-Stim_PSC_isolated_dendrite_Div_gPas.hoc
init_Cldif_GDP.hoc
init_Cldif_isolated_dendrite.hoc *
Isolated_Dendrite.ses *
Isolated_dendrite_Gpas.hoc
Isolated_Dendrite_PSP.ses
Isolated_Dendrite_Rin.ses
Isolated_dendrite_VDpas.hoc
start_GABA_isolated_dendrite.hoc
start_GABA_isolated_dendrite_Var_gPas.hoc
                            
// a single synaptic input

// Determination Parameters GABA
  ANZAHL_GABA = 1        //Anzahl der synaptischen Pulse
  G_GABA = 0.000789     // 10 pS Default
  P_GABA = 0.0
  DECAY_GABA = 37  
  GABA_SYN_LOCATION = 0.5  // Position GABA Synapse for Pulses
  ONSET_PULSE = 50  

// Determination of Synapses
objref gabasyn

dend {
    // insert GABA synapse 
    gabasyn = new gaba(GABA_SYN_LOCATION)
    tau1_gaba = 0.1 
    tau2_gaba = DECAY_GABA
    HCO3e_gaba = 22.4 
    HCO3i_gaba = 14.1
    P_gaba = P_GABA
}

// Definition of synaptic Stimuli

objref stimGABApuls //Pulssequenz GABA
stimGABApuls = new NetStim(GABA_SYN_LOCATION)
  stimGABApuls.number = ANZAHL_GABA
  stimGABApuls.start = ONSET_PULSE

// Linkage of synaptic Inputs

objref synpulsegaba

dend {
    	synpulsegaba = new NetCon(stimGABApuls, gabasyn, 0, 0, G_GABA)
}

//-----begin loop ---------------------
Loops = 20
tstop = 250   // Duration
v_init = -60   // Initial voltage
dt = 0.01      // Step Interval in ms

//-- Define Output Vectors and Files ------
objref timevec, voltvec, clivec
objref OutmatrixV, OutmatrixCl


voltvec = new Vector()
timevec = new Vector()
clivec = new Vector()
OutmatrixV = new Matrix()
OutmatrixCl = new Matrix()

strdef OutFileNameV, OutFileNameCl
objref OutFileV, OutFileCl 

gPas_Value = 0.00000543840  // Corresponding to 10 GOhm Rinput in simulated cell

for i=0, Loops-1 {
  
  // assign gPas to Dendrite ------------
  dend {
    insert pas
      g_pas = gPas_Value
      e_pas = -60
    }
  // Link Output Vectors ----------------
  timevec.record(&t)   // Time vector
  voltvec.record(&dend.v(.5)) // Volt vector in dendrite
  clivec.record(&dend.cli(0.5))

  // Run Simulation --------------------------------------------------------

     run()
  
  // put Data in Output Matrix
     timevec.insrt(0,222222) 
     voltvec.insrt(0,gPas_Value) 
     clivec.insrt(0,gPas_Value)

     OutmatrixV.resize(timevec.size()+1, Loops+1)
     OutmatrixV.setcol(0, timevec)
     OutmatrixV.setcol(i, voltvec)
     OutmatrixCl.resize(timevec.size()+2, Loops+1)
     OutmatrixCl.setcol(0, timevec)
     OutmatrixCl.setcol(i, clivec)

     printf("Sequence %g of %g; gPas = %g,  \n", i, Loops, gPas_Value)  
  

  // Next gPas ----------------------------------------
  gPas_Value = gPas_Value / 1.3333333
} // End of for loop

// Save the Data --------------------------------------------------------------------
OutFileV = new File()
OutFileCl = new File()
sprint(OutFileNameV, "Result_V_of_isoDend_pGABA_0_Var_gPas.asc")
sprint(OutFileNameCl, "Result_Cl_of_isoDend_pGABA_0_Var_gPas.asc")
OutFileV.wopen(OutFileNameV) 
OutFileCl.wopen(OutFileNameCl)
OutmatrixV.fprint(OutFileV, "\t%g")     
OutmatrixCl.fprint(OutFileCl, "\t%g") 
OutFileV.close
OutFileCl.close