Factors contribution to GDP-induced [Cl-]i transients (Lombardi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:253369
This models are used to evaluate which factors influence the GDP (giant depolarizing potential) induced [Cl-]I transients based on a initial model of P. Jedlicka
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2019) Interactions Between Membrane Resistance, GABA-A Receptor Properties, Bicarbonate Dynamics and Cl-Transport Shape Activity-Dependent Changes of Intracellular Cl- Concentration Int J of Mol Sci [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite; Synapse;
Brain Region(s)/Organism: Mouse; Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; Gaba;
/
LombardiEtAl2019
Real_Cell_Cl_HCO3_1GDP_Var-Cl-_tauNKCC1__Fig9
cldif_CA3.mod *
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
VDpas.mod *
vecevent.mod *
Cell1_Cl_HCO3_VDPas.hoc *
Cell1_Cl_wo-HCO3_VDPas.hoc *
GDP_CL_FLuxes.ses
GDP_Cl_HCO3_All_short.ses *
Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Cl-10_Div-tauNKCC1_GUI.hoc
Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Div-tauNKCC1_Div-Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Cl-10_Div-tauNKCC1_GUI.hoc
start_Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Div-tauNKCC1_Div-Cl.hoc
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[5]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(0,0,0)}
{
xpanel("RunControl", 0)
v_init = -60
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 50000
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 32802.1
xvalue("t","t", 2 )
tstop = 1500
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.5
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 1
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 182.28
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(0,302)
}
{
save_window_ = new Graph(0)
save_window_.size(0,50000,-70,-30)
scene_vector_[2] = save_window_
{save_window_.view(0, -70, 50000, 40, 1224, 150, 531.9, 200.8)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("v(.5)", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,50000,10,25)
scene_vector_[3] = save_window_
{save_window_.view(0, 10, 50000, 15, 1227, 486, 532.8, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("soma.cli( 0.5 )", 3, 1, 0.8, 0.9, 2)
save_window_.addexpr("apic.cli( 0.0555556 )", 2, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[22].cli( 0.555556 )", 4, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,50000,0,0.05)
scene_vector_[4] = save_window_
{save_window_.view(0, 0, 50000, 0.05, 1225, 819, 536.4, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("apic.cli(0.0555556)-soma.cli(0.5)", 1, 1, 0.8, 0.9, 2)
}
objectvar scene_vector_[1]
{doNotify()}