Factors contribution to GDP-induced [Cl-]i transients (Lombardi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:253369
This models are used to evaluate which factors influence the GDP (giant depolarizing potential) induced [Cl-]I transients based on a initial model of P. Jedlicka
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2019) Interactions Between Membrane Resistance, GABA-A Receptor Properties, Bicarbonate Dynamics and Cl-Transport Shape Activity-Dependent Changes of Intracellular Cl- Concentration Int J of Mol Sci [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite; Synapse;
Brain Region(s)/Organism: Mouse; Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; Gaba;
/
LombardiEtAl2019
Real_Cell_Cl_HCO3_1GDP_Var-Cl-_tauNKCC1__Fig9
cldif_CA3.mod *
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
VDpas.mod *
vecevent.mod *
Cell1_Cl_HCO3_VDPas.hoc *
Cell1_Cl_wo-HCO3_VDPas.hoc *
GDP_CL_FLuxes.ses
GDP_Cl_HCO3_All_short.ses *
Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Cl-10_Div-tauNKCC1_GUI.hoc
Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Div-tauNKCC1_Div-Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Cl-10_Div-tauNKCC1_GUI.hoc
start_Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Div-tauNKCC1_Div-Cl.hoc
                            
//--------------------------------------------------------------------
// Simulation of  a single GDP
//---------------------------------------------------------------------

// ------------Definition of Parameters -------------------------------
// --------------------------------------------------------------------


// Determining Cl- Properties --------------------------------------
Cli = 10 // [Cl-]i  
tauCli_Step = 0       // define here wich tau_CLi to pick


tauCli_Steps = 4                           // 3 different decay constants
objref tauCli_List
tauCli_List = new Vector(tauCli_Steps)
// manually put desired tau_Values in List 
  tauCli_List.x[0] = 100       // synaptic weight according to miniature events
  tauCli_List.x[1] = 1000   
  tauCli_List.x[2] = 10000   
  tauCli_List.x[3] = 10^8 

// Determination Parameters GABA ------------------------------------

DECAY_GABA = 37
G_GABA = 0.000789
P_GABA = 0.18
ngabasyn = 395 
gninputs = 1 // number of inputs per synapse


// Definition of various runtime parameters --------------------------

ndend=56  // Number of dendrites

seed = 8  // seed for random function
   
tstop = 1500   // Duration
v_init = -60   // Initial voltage
dt = 0.005       // Step Interval in ms
steps_per_ms = 1



// ---------Definition of objects -------------------------------------
// --------------------------------------------------------------------


// Objects for GABA Synapses ---------------------------------------------------------
objref GABA_SYN_LOCATION
GABA_SYN_LOCATION = new Random(seed)                // Position of GABA synapse as random Object

objref gabasyn[ngabasyn]                            // Definition of synapse objects

// random function for localization of synapses
objref rand_loc

// random function for synapses parameters
objref rand_gaba_t, rand_gaba_g

// definition of Vectors for Gaba-Stimulation (t_vec = timestamps t_vecr = sorted timestamps, g_vec = rel conductance)
objref gabastim[ngabasyn], gaba_t_vec[ngabasyn], gaba_t_vecr[ngabasyn], synpulsegaba[ngabasyn], gaba_g_vec[ngabasyn]



// Start of Input generation -------------------------------------------

// initiation of Random functions
rand_loc = new Random(seed)
rand_gaba_t = new Random(seed)
rand_gaba_g = new Random(seed)

//Define properties of random Function
rand_gaba_t.normal(600, 9000)
rand_gaba_g.normal(1, 0.28) //rel variance of GABA according to results

// generate Vectors --- (gniputs, aninputs defines number of inputs per synapse) ------
for i = 0, ngabasyn-1 {
  gaba_t_vec[i] = new Vector(gninputs)
  gaba_t_vecr[i] = new Vector(gninputs)
  gaba_g_vec[i] = new Vector(gninputs)
}

  // 1. Distribute GABA synapses -----------------------------------------------------------

    for k=0, ngabasyn-1 {
      pos = rand_loc.uniform(0,ndend-1)
      pos2 = GABA_SYN_LOCATION.uniform (0.0001, 0.999)
      dend_0[pos]{
        gabasyn[k] = new gaba(pos2)
        gabasyn[k].tau1 = 0.1
        gabasyn[k].P = P_GABA
        }
      }

    // 2. Generate timestamps/conductances for GABA synapses --------------------------------------
    for f=0, ngabasyn-1 {
      for i=0, gninputs-1 {
          t = rand_gaba_t.repick()
          g = rand_gaba_g.repick()
          gaba_t_vec[f].x[i]=t
          gaba_g_vec[f].x[i]=G_GABA
      }
    }

    for f=0, ngabasyn-1 {
      gaba_t_vecr[f] = gaba_t_vec[f].sort()
    }


  // 3. generate Vecstim-vectrors from the sorted timestamp-vectors -------------------------------
      for i=0, ngabasyn-1 {
        gabastim[i] = new VecStim()
        gabastim[i].play(gaba_t_vecr[i])
      }                                                 // GABA stimulator


  // 4. Play the Vecstim objects to the synapses ---------------------------------------------
      for i=0, ngabasyn-1 {
        synpulsegaba[i] = new NetCon(gabastim[i], gabasyn[i], 0, 0, G_GABA)
      }                                                  // GABA NetCon

 
  // 5. Determine Properties of Cl- Homeostasis  
    forsec all {
      cli0_cldif_CA3_NKCC1_HCO3 = Cli
      cli_Start_cldif_CA3_NKCC1_HCO3 = Cli
      cli_cldif_CA3_NKCC1_HCO3 = Cli
      tau_NKCC1_cldif_CA3_NKCC1_HCO3 = tauCli_List.x[tauCli_Step]
      tau_passive_cldif_CA3_NKCC1_HCO3 = tauCli_List.x[tauCli_Step]
    }