Biochemically detailed model of LTP and LTD in a cortical spine (Maki-Marttunen et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:260971
"Signalling pathways leading to post-synaptic plasticity have been examined in many types of experimental studies, but a unified picture on how multiple biochemical pathways collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the visual cortex and can be fit to data from many cortical areas, uncovering the biochemical contributions of the pathways pinpointed by the underlying experimental studies. Our model explains the dependence of different forms of plasticity on the availability of different proteins and can be used for the study of mental disorder-associated impairments of cortical plasticity."
Reference:
1 . Mäki-Marttunen T, Iannella N, Edwards AG, Einevoll GT, Blackwell KT (2020) A unified computational model for cortical post-synaptic plasticity. Elife [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex spiking regular (RS) neuron;
Channel(s): I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate; Norephinephrine; Acetylcholine;
Simulation Environment: NEURON; NeuroRD;
Model Concept(s): Long-term Synaptic Plasticity;
Implementer(s): Maki-Marttunen, Tuomo [tuomomm at uio.no];
Search NeuronDB for information about:  I Calcium; Acetylcholine; Norephinephrine; Glutamate;
/
synaptic
L23PC
mechanisms
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPANMDA_EMS.mod
ProbAMPANMDA_EMS_group.mod
ProbAMPANMDA_EMS_groupdet.mod
ProbAMPANMDA_EMST.mod
ProbAMPANMDA2.mod
ProbAMPANMDA2group.mod
ProbAMPANMDA2groupdet.mod
ProbGABAAB_EMS.mod
ProbGABAAB_EMS_group.mod
ProbUDFsyn2.mod *
ProbUDFsyn2group.mod *
ProbUDFsyn2groupdet.mod *
SK_E2.mod *
SKv3_1.mod *
                            
: this model is built-in to neuron with suffix epsp
: Schaefer et al. 2003

COMMENT
modified from syn2.mod
injected current with exponential rise and decay current defined by
         i = 0 for t < onset and
         i=amp*((1-exp(-(t-onset)/tau0))-(1-exp(-(t-onset)/tau1)))
          for t > onset

	compare to experimental current injection:
 	i = - amp*(1-exp(-t/t1))*(exp(-t/t2))

	-> tau1==t2   tau0 ^-1 = t1^-1 + t2^-1
ENDCOMMENT
					       
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS epsp
	RANGE onset, tau0, tau1, imax, i, myv
	NONSPECIFIC_CURRENT i
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
}

PARAMETER {
	onset=0  (ms)
	tau0=0.2 (ms)
	tau1=3.0 (ms)
	imax=0 	 (nA)
	v	 (mV)
}

ASSIGNED { i (nA)  myv (mV)}

LOCAL   a[2]
LOCAL   tpeak
LOCAL   adjust
LOCAL   amp

BREAKPOINT {
	myv = v
        i = curr(t)
}

FUNCTION myexp(x) {
	if (x < -100) {
	myexp = 0
	}else{
	myexp = exp(x)
	}
}

FUNCTION curr(x) {				
	tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1)
	adjust=1/((1-myexp(-tpeak/tau0))-(1-myexp(-tpeak/tau1)))
	amp=adjust*imax
	if (x < onset) {
		curr = 0
	}else{
		a[0]=1-myexp(-(x-onset)/tau0)
		a[1]=1-myexp(-(x-onset)/tau1)
		curr = -amp*(a[0]-a[1])
	}
}