Mice Somatosensory L2/3 Pyramidal cells (Iascone et al 2020)

 Download zip file 
Help downloading and running models
Accession:261460
Mice L2/3 pyramidal cells with full excitatory and inhibitory synaptic maps (Models used in Whole-neuron synaptic mapping reveals local balance between excitatory and inhibitory synapse organization - Iascone et at 2020)
Reference:
1 . Iascone DM, Li Y, Sümbül U, Doron M, Chen H, Andreu V, Goudy F, Blockus H, Abbott LF, Segev I, Peng H, Polleux F (2020) Whole-Neuron Synaptic Mapping Reveals Spatially Precise Excitatory/Inhibitory Balance Limiting Dendritic and Somatic Spiking Neuron
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic-input statistic;
Implementer(s): Doron, Michael [michael.doron at mail.huji.ac.il];
/
IasconeEtAl2020
mod_files
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPA.mod
ProbAMPANMDA2_ratio.mod *
ProbUDFsyn2_lark.mod *
SK_E2.mod *
SKv3_1.mod *
vecevent.mod *
                            
:Comment :
:Reference : :		Reuveni, Friedman, Amitai, and Gutnick, J.Neurosci. 1993

NEURON	{
	SUFFIX Ca_HVA
	USEION ca READ eca WRITE ica
	RANGE gCa_HVAbar, gCa_HVA, ica 
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gCa_HVAbar = 0.00001 (S/cm2) 
}

ASSIGNED	{
	v	(mV)
	eca	(mV)
	ica	(mA/cm2)
	gCa	(S/cm2)
	mInf
	mTau
	mAlpha
	mBeta
	hInf
	hTau
	hAlpha
	hBeta
}

STATE	{ 
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gCa = gCa_HVAbar*m*m*h
	ica = gCa*(v-eca)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
	UNITSOFF
        if((v == -27) ){        
            v = v+0.0001
        }
		mAlpha =  (0.055*(-27-v))/(exp((-27-v)/3.8) - 1)        
		mBeta  =  (0.94*exp((-75-v)/17))
		mInf = mAlpha/(mAlpha + mBeta)
		mTau = 1/(mAlpha + mBeta)
		hAlpha =  (0.000457*exp((-13-v)/50))
		hBeta  =  (0.0065/(exp((-v-15)/28)+1))
		hInf = hAlpha/(hAlpha + hBeta)
		hTau = 1/(hAlpha + hBeta)
	UNITSON
}