NN activity impact on neocortical pyr. neurons integrative properties in vivo (Destexhe & Pare 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:262115
"During wakefulness, neocortical neurons are subjected to an intense synaptic bombardment. To assess the consequences of this background activity for the integrative properties of pyramidal neurons, we constrained biophysical models with in vivo intracellular data obtained in anesthetized cats during periods of intense network activity similar to that observed in the waking state. In pyramidal cells of the parietal cortex (area 5–7), synaptic activity was responsible for an approximately fivefold decrease in input resistance (Rin), a more depolarized membrane potential (Vm), and a marked increase in the amplitude of Vm fluctuations, as determined by comparing the same cells before and after microperfusion of tetrodotoxin (TTX). ..."
Reference:
1 . Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531-47 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L2/3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I K; I M;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; I Na,t; I K; I M;
 
/
demo_destexhe-pare-1999
                            
File not selected

<- Select file from this column.