NN activity impact on neocortical pyr. neurons integrative properties in vivo (Destexhe & Pare 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:262115
"During wakefulness, neocortical neurons are subjected to an intense synaptic bombardment. To assess the consequences of this background activity for the integrative properties of pyramidal neurons, we constrained biophysical models with in vivo intracellular data obtained in anesthetized cats during periods of intense network activity similar to that observed in the waking state. In pyramidal cells of the parietal cortex (area 5–7), synaptic activity was responsible for an approximately fivefold decrease in input resistance (Rin), a more depolarized membrane potential (Vm), and a marked increase in the amplitude of Vm fluctuations, as determined by comparing the same cells before and after microperfusion of tetrodotoxin (TTX). ..."
Reference:
1 . Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531-47 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L2/3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I K; I M;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; I Na,t; I K; I M;
/
demo_destexhe-pare-1999
README.html
corrgen8.mod
corrgen8.mod.windows
IKd_traub.mod
IM_zach.mod
INa_traub_shifted.mod
multiAMPA.mod
multiGABAa.mod
multiNMDA.mod
add_just_axon.oc
demo_bombardment_active_coarse.oc
demo_bombardment_active_precise.oc
demo_bombardment_passive_coarse.oc
demo_bombardment_passve_precise.oc
Electrode.oc
init.hoc
layer6.geo
localize_currents_M.oc
localize_synapses_corrgen_mul.oc
mosinit.hoc *
screenshot.png
                            
TITLE Delayer rectifier

COMMENT
-----------------------------------------------------------------------------
	"delayer-rectifier" K current for action potentials
	---------------------------------------------------

  - potassium current, voltage-dependent
  - iterative equations

  Model of IKd for hippocampal pyramidal cells, from
  Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991

  Written by Alain Destexhe, Laval University, 1996
-----------------------------------------------------------------------------
ENDCOMMENT


INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX ikdT
	USEION k READ ek WRITE ik
	RANGE gkbar, vtraub
	RANGE n_inf
	RANGE tau_n
	RANGE n_exp
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gkbar	= .005 	(mho/cm2)
	vtraub	= -55	(mV)		: adjusts threshold
	ek	= -90	(mV)
	celsius = 36    (degC)
	dt              (ms)
	v               (mV)
}

STATE {
	n
}

ASSIGNED {
	ik	(mA/cm2)
	n_inf
	tau_n
	n_exp
	tadj
}


BREAKPOINT {
	SOLVE states
	ik  = gkbar * n*n*n*n * (v - ek)
}


:DERIVATIVE states {
:	evaluate_fct(v)
:	n' = (n_inf - n) / tau_n
:}

PROCEDURE states() {	: exact when v held constant
	evaluate_fct(v)
	n = n + n_exp * (n_inf - n)
}

UNITSOFF
INITIAL {
:
:  Q10 was assumed to be 2.3 for both currents
:
:  original measurements at room temperature

	tadj = 3.0 ^ ((celsius-36)/ 10 )
	evaluate_fct(v)
	n = n_inf
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	v2 = v - vtraub : convert to traub convention

	a = 0.032 * (15-v2) / ( exp((15-v2)/5) - 1)
	b = 0.5 * exp((10-v2)/40)

	tau_n = 1 / (a + b) / tadj
	n_inf = a / (a + b)

	n_exp = 1 - exp(-dt/tau_n)
}

UNITSON