NN activity impact on neocortical pyr. neurons integrative properties in vivo (Destexhe & Pare 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:262115
"During wakefulness, neocortical neurons are subjected to an intense synaptic bombardment. To assess the consequences of this background activity for the integrative properties of pyramidal neurons, we constrained biophysical models with in vivo intracellular data obtained in anesthetized cats during periods of intense network activity similar to that observed in the waking state. In pyramidal cells of the parietal cortex (area 5–7), synaptic activity was responsible for an approximately fivefold decrease in input resistance (Rin), a more depolarized membrane potential (Vm), and a marked increase in the amplitude of Vm fluctuations, as determined by comparing the same cells before and after microperfusion of tetrodotoxin (TTX). ..."
Reference:
1 . Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531-47 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L2/3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I K; I M;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; I Na,t; I K; I M;
/
demo_destexhe-pare-1999
README.html
corrgen8.mod
corrgen8.mod.windows
IKd_traub.mod
IM_zach.mod
INa_traub_shifted.mod
multiAMPA.mod
multiGABAa.mod
multiNMDA.mod
add_just_axon.oc
demo_bombardment_active_coarse.oc
demo_bombardment_active_precise.oc
demo_bombardment_passive_coarse.oc
demo_bombardment_passve_precise.oc
Electrode.oc
init.hoc
layer6.geo
localize_currents_M.oc
localize_synapses_corrgen_mul.oc
mosinit.hoc *
screenshot.png
                            
TITLE Sodium channels

COMMENT
-----------------------------------------------------------------------------
	Na current for action potentials
	--------------------------------

  - fast sodium current
  - iterative equations

  Model of INa for hippocampal pyramidal cells, from
  Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991

  Added a shift parameter for inactivation only

  Written by Alain Destexhe, Laval University, 1996
-----------------------------------------------------------------------------
ENDCOMMENT


INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX inaT
	USEION na READ ena WRITE ina
	RANGE gnabar, vtraub, shift
	RANGE m_inf, h_inf
	RANGE tau_m, tau_h
	RANGE m_exp, h_exp
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gnabar	= .003 	(mho/cm2)	: max conductance
	vtraub	= -65	(mV)		: adjusts threshold
	shift	= 0	(mV)		: inactivation shift
	ena	= 50	(mV)
	celsius = 36    (degC)
	dt              (ms)
	v               (mV)
}

STATE {
	m h
}

ASSIGNED {
	ina	(mA/cm2)
	m_inf
	h_inf
	tau_m	(ms)
	tau_h	(ms)
	m_exp
	h_exp
	tadj
}


BREAKPOINT {
	SOLVE states
	ina = gnabar * m*m*m*h * (v - ena)
}


:DERIVATIVE states {
:	evaluate_fct(v)
:	m' = (m_inf - m) / tau_m
:	h' = (h_inf - h) / tau_h
:}

PROCEDURE states() {	: exact when v held constant
	evaluate_fct(v)
	m = m + m_exp * (m_inf - m)
	h = h + h_exp * (h_inf - h)
}

UNITSOFF
INITIAL {
	m = 0
	h = 0
:
:  Q10 was assumed to be 2.3 for both currents
:
:  original measurements at room temperature

	tadj = 2.3 ^ ((celsius-23)/ 10 )
	evaluate_fct(v)
	m = m_inf
	h = h_inf
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	v2 = v - vtraub 	: convert to traub convention

	a = 0.32 * (13-v2) / ( exp((13-v2)/4) - 1)
	b = 0.28 * (v2-40) / ( exp((v2-40)/5) - 1)
	tau_m = 1 / (a + b)
	m_inf = a / (a + b)

	v2 = v2 - shift		: inactivation shift

	a = 0.128 * exp((17-v2)/18)
	b = 4 / ( 1 + exp((40-v2)/5) )
	tau_h = 1 / (a + b)
	h_inf = a / (a + b)

	m_exp = 1 - exp(-dt/tau_m)
	h_exp = 1 - exp(-dt/tau_h)
}

UNITSON