Cerebellar granule cell (Masoli et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:265584
"The cerebellar granule cells (GrCs) are classically described as a homogeneous neuronal population discharging regularly without adaptation. We show that GrCs in fact generate diverse response patterns to current injection and synaptic activation, ranging from adaptation to acceleration of firing. Adaptation was predicted by parameter optimization in detailed computational models based on available knowledge on GrC ionic channels. The models also predicted that acceleration required additional mechanisms. We found that yet unrecognized TRPM4 currents specifically accounted for firing acceleration and that adapting GrCs outperformed accelerating GrCs in transmitting high-frequency mossy fiber (MF) bursts over a background discharge. This implied that GrC subtypes identified by their electroresponsiveness corresponded to specific neurotransmitter release probability values. Simulations showed that fine-tuning of pre- and post-synaptic parameters generated effective MF-GrC transmission channels, which could enrich the processing of input spike patterns and enhance spatio-temporal recoding at the cerebellar input stage."
Reference:
1 . Masoli S, Tognolina M, Laforenza U, Moccia F, D'Angelo E (2020) Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Commun Biol 3:222 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell;
Channel(s): Ca pump; I Na, leak; I Calcium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Calcium dynamics; Synaptic Integration;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; AMPA; NMDA; I Calcium; I Na, leak; Ca pump;
/
Granule_cell_2020
03_GrC_2020_adapting
mod_files
cdp5_CR.mod *
GRANULE_Ampa_det_vi.mod *
GRANULE_Nmda_det_vi.mod *
GRC_CA.mod *
GRC_KM.mod *
GRC_NA.mod *
GRC_NA_FHF.mod *
Kca11.mod *
Kca22.mod *
Kir23.mod *
Kv11.mod *
Kv15.mod *
Kv22.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
                            
TITLE Cerebellum Granule Cell Model

COMMENT
	Reference: Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells:Experimental
	Evidence and Modeling of a Slow K+-Dependent Mechanism
	Egidio D'Angelo,Thierry Nieus,Arianna Maffei,Simona Armano,Paola Rossi,Vanni Taglietti,
	Andrea Fontana and Giovanni Naldi

Suffix from Ubc_Kir to Kir2_3
ENDCOMMENT
 
NEURON { 
	SUFFIX Kir2_3
	USEION k READ ek WRITE ik 
	RANGE gkbar, ik, g, alpha_d, beta_d, ek
	RANGE Aalpha_d, Kalpha_d, V0alpha_d
	RANGE Abeta_d, Kbeta_d, V0beta_d
	RANGE d_inf, tau_d 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	Aalpha_d = 0.13289 (/ms)

	
	Kalpha_d = -24.3902 (mV)

	V0alpha_d = -83.94 (mV)
	Abeta_d = 0.16994 (/ms)

	
	Kbeta_d = 35.714 (mV)

	V0beta_d = -83.94 (mV)
	v (mV) 
	gkbar = 0.0009 (mho/cm2) 
	ek (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	d 
} 

ASSIGNED { 
	ik (mA/cm2) 
	d_inf 
	tau_d (ms) 
	g (mho/cm2) 
	alpha_d (/ms) 
	beta_d (/ms) 
} 
 
INITIAL { 
	rate(v) 
	d = d_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit
	g = gkbar*d   
	ik = g*(v - ek) 
	alpha_d = alp_d(v) 
	beta_d = bet_d(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	d' =(d_inf - d)/tau_d 
} 
 
FUNCTION alp_d(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	alp_d = Q10*Aalpha_d*exp((v-V0alpha_d)/Kalpha_d) 
} 
 
FUNCTION bet_d(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	bet_d = Q10*Abeta_d*exp((v-V0beta_d)/Kbeta_d) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_d, b_d 
	TABLE d_inf, tau_d  
	DEPEND Aalpha_d, Kalpha_d, V0alpha_d, 
	       Abeta_d, Kbeta_d, V0beta_d, celsius FROM -100 TO 100 WITH 200 
	a_d = alp_d(v)  
	b_d = bet_d(v) 
	tau_d = 1/(a_d + b_d) 
	d_inf = a_d/(a_d + b_d) 
}