Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nat Commun . [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
: FORREST MD (2014) Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC Neuroscience

TITLE decay of submembrane calcium concentration
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: This file contains two mechanisms:
:
: 1. Simple model of ATPase pump with 3 kinetic constants (Destexhe 1992)
:
:      Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
:
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters:
:    kt = <tot enzyme concentration> * k3 -> TIME CONSTANT OF THE PUMP
:    kd = k2/k1 (dissociation constant)  -> EQUILIBRIUM CALCIUM VALE
: The values of these parameters are chosen assuming a high affinity of
: the pump to calcium and a low transport capacity (cfr. Blaustein,
: TINS, 11: 438, 1988, and references therein).
:
: For further information about this this mechanism, see Destexhe,A.
: Babloysntz,A. and Sejnowski,TJ. Ionic mechanisms for intrinsic slow
: oscillations in thalamic relay neurons. Biophys.J.65:1538-1552,1933.
:
:
: 2. Simple first-order decay or buffering:
:
:      Cai + B <->...
:
: which can be ritten as:
:
:      dCai/dt = (cainf-Cai) / taur
:
: where cainf is the equilibrium intracellular calcium value (usually
: inthe range of 200-300 nM) and tsur is the time constant of calcium
: removal. The dynamics of submembranal calcium is usually thought to
: be relativly fast, inthe 1-10 millisecond range (see Balaustein,
: TINS, 11:438,1988).
:
: All variables are range variables
:
: Written by Alain Destexhe, Salk Institute,Nov 12,1992 
: 

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cad
	USEION ca READ ica,cai WRITE cai
:        USEION Ca READ Cai VALENCE 2
	RANGE depth,kt,kd,cainf,taur
}

UNITS {
	(molar) = (1/liter)      :moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)   = (ms mM)
}

CONSTANT{
	FARADAY = 96489 (coul)   : moles do not appear in units
}

PARAMETER {
	depth = .1	(um)     : depth of shell
	taur  = 1e10    (ms)     : remove first-order decay
	cainf =  2.4e-4	(mM)
	kt    = 1e-4	(mM/ms)
	kd    = 1e-4	(mM)
}

STATE {
	cai   (mM)
}

INITIAL {
	cai = kd
}

ASSIGNED{
	ica		(mA/cm2)
	drive_channel   (mM/ms)
	drive_pump	(mM/ms)
        Cai  (mM)
}

BREAKPOINT{
	SOLVE state METHOD euler
}

DERIVATIVE state {

	drive_channel = -(10000)*ica/(2*FARADAY*depth)

	if(drive_channel <= 0.) {drive_channel = 0.}:cannot pump inward

	drive_pump = -kt*cai/(cai+kd)  :Michaelis-Menten

cai' =drive_channel+drive_pump+(cainf-cai)/taur


}