Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nat Commun . [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
: HH P-type Calcium current
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron

NEURON {
	SUFFIX captain
	USEION ca READ cai, cao WRITE ica
	RANGE pcabar
	GLOBAL minf,mtau
	GLOBAL monovalConc, monovalPerm
}

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
	(mM) = (milli/liter)
	F = 9.6485e4   (coul)
	R = 8.3145 (joule/degC)
}

PARAMETER {
	v (mV)

	pcabar = .00005	(cm/s)
	monovalConc = 140     (mM)
	monovalPerm = 0

	cai             (milli/liter)
	cao             (milli/liter)
Q10 = 3 (1) 
  Q10TEMP = 22 (degC) 
}

ASSIGNED {
	ica            (mA/cm2)
        minf
	mtau           (ms)
	T              (degC)
	E              (volts)
celsius (degC) 
  qt (1) 

}

STATE {
	m
}

INITIAL {
	rates(v)
	m = minf
: qt = Q10^((celsius-Q10TEMP)/10) 
qt = 1
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ica = (1e3) * pcabar * m * ghk(v, cai, cao, 2)
}

DERIVATIVE states {
	rates(v)
	m' = (minf - m)/mtau
}

FUNCTION ghk( v(mV), ci(mM), co(mM), z)  (coul/cm3) { LOCAL Ci
	T = 22 + 273.19  : Kelvin
        E = (1e-3) * v
        Ci = ci + (monovalPerm) * (monovalConc)        : Monovalent permeability
	if (fabs(1-exp(-z*(F*E)/(R*T))) < 1e-6) { : denominator is small -> Taylor series
		ghk = (1e-6) * z * F * (Ci-co*exp(-z*(F*E)/(R*T)))*(1-(z*(F*E)/(R*T)))
	} else {
		ghk = (1e-6) * z^2*(E*F^2)/(R*T)*(Ci-co*exp(-z*(F*E)/(R*T)))/(1-exp(-z*(F*E)/(R*T)))
	}
}

PROCEDURE rates (v (mV)) {
        UNITSOFF
	minf = 1/(1+exp(-(v - (-19)) / 5.5))
	mtau = ((mtau_func(v)) * 1e3) / qt
        UNITSON
}

FUNCTION mtau_func( v (mV) ) (ms) {
        UNITSOFF
        if (v > -50) {
            mtau_func = .000191 + .00376*exp(-((v-(-41.9))/27.8)^2)
        } else {
            mtau_func = .00026367 + .1278 * exp(.10327*v)
        }
        UNITSON
}