Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nature Communications, accepted
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
TITLE T calcium current
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron
 
COMMENT
  from "An Active Membrane Model of the Cerebellar Purkinje Cell
        1. Simulation of Current Clamp in Slice"
ENDCOMMENT
 
UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}
 
NEURON {
        SUFFIX cat
        USEION ca READ cai, cao WRITE ica
        RANGE  gcabar, ica, gca, minf, hinf, mexp, hexp
} 
 
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
 
PARAMETER {
        v (mV)
        celsius = 37 (degC)
        dt (ms)
        gcabar = .0005 (mho/cm2)
        eca = 135 (mV)
	cai	= 0.40e-4 (mM)		: adjusted for eca=135mV
	cao	= 2.4	(mM)

}
 
STATE {
        m h
}
 
ASSIGNED {
        ica (mA/cm2)
        gca minf hinf mexp hexp 
}
 
BREAKPOINT {
        SOLVE states
        gca = gcabar * m*h
	ica = gca* (v-eca)
}
 
UNITSOFF
 
INITIAL {
	rates(v)
	m = minf
	h = hinf
}

PROCEDURE states() {  :Computes state variables m, h
        rates(v)      :             at the current v and dt.
        m = m + mexp*(minf-m)
        h = h + hexp*(hinf-h)
}
 
PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        LOCAL  q10, tinc, alpha, beta, sum
        TABLE minf, mexp, hinf, hexp DEPEND dt, celsius FROM -100 TO 100 WITH 200
        q10 = 3^((celsius - 37)/10)
        tinc = -dt * q10
                :"m" calcium activation system
        alpha = 2.6/(1+exp((v+21)/(-8)))
        beta =  0.18/(1+exp((v+40)/4))
        sum = alpha + beta
        minf = alpha/sum
        mexp = 1 - exp(tinc*sum)
                :"h" calcium inactivation system
        alpha = 0.0025/(1+exp((v+40)/8))
        beta = 0.19/(1+exp((v+50)/(-10)))
        sum = alpha + beta
        hinf = alpha/sum
        hexp = 1 - exp(tinc*sum)
}

 
UNITSON