Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nature Communications, accepted
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
TITLE K2 calcium-activated potassium current
: Calcium activated K channel.
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron

COMMENT
  from "An Active Membrane Model of the Cerebellar Purkinje Cell
        1. Simulation of Current Clamp in Slice"
ENDCOMMENT

UNITS {
	(molar) = (1/liter)
}

UNITS {
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
}


INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX k23
	USEION ca READ cai
	USEION k READ ek WRITE ik
	RANGE gkbar,gk,zinf,ik
}


PARAMETER {
	celsius=37	(degC)
	v		(mV)
	gkbar=.00039	(mho/cm2)	: Maximum Permeability
	cai = .04e-3	(mM)
:	ek  = -85	(mV)
	dt		(ms)
}


ASSIGNED {
	ik		(mA/cm2)
	minf
	mexp
	zinf
	zexp
	gk
        ek (mV)
}

STATE {	m z }		: fraction of open channels

BREAKPOINT {
	SOLVE state
:	gk = gkbar*m*z*z
	ik = gkbar*m*z*z*(v - ek)
}
:UNITSOFF
:LOCAL fac

:if state_cagk is called from hoc, garbage or segmentation violation will
:result because range variables won't have correct pointer.  This is because
: only BREAKPOINT sets up the correct pointers to range variables.
PROCEDURE state() {	: exact when v held constant; integrates over dt step
	rate(v, cai)
	m = m + mexp*(minf - m)
	z = z + zexp*(zinf - z)
	VERBATIM
	return 0;
	ENDVERBATIM
}

INITIAL {
	rate(v, cai)
	m = minf
	z = zinf
}

FUNCTION alp(v (mV), ca (mM)) (1/ms) { :callable from hoc
	alp = 20/(ca*1000)
}

FUNCTION bet(v (mV)) (1/ms) { :callable from hoc
	bet = 0.075/exp((v+5)/10)
}

PROCEDURE rate(v (mV), ca (mM)) { :callable from hoc
	LOCAL a,b
	a = alp(v,ca)
	zinf = 1/(1+a)
	zexp = (1 - exp(-dt/10))
	b = bet(v)
	minf = 25/(25+b)
	mexp = (1 - exp(-dt*(25+b)))
}
:UNITSON