Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nat Commun . [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
: simlates()ple first-order model of potassium dynamics
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron
: from Durstewitz & Gabriel (2006), Cerebral Cortex


NEURON {
        SUFFIX kdyn
        USEION k READ ko,ik WRITE ko 
        RANGE ko, ra, KAF, dep, peak
}

UNITS {
        (mM) = (milli/liter)
        (mA) = (milliamp)
        F    = (faraday) (coul)
}

PARAMETER {
        tck    = 1000   (ms)           : decay time constant
        koinf = 2 (mM)        :3.82 	(mM)      : equilibrium k+ concentration
	kiinf = 140     (mM)	  :
        dep   = 70e-3 (micron)     : depth of shell for k+ diffusion
	KAF   = 0.143 ()		  : K accumulation factor
peak = 3.03 ()
}

ASSIGNED {
        ik     (mA/cm2)
        ra
}

INITIAL {
	ko=koinf
}

STATE { ko (mM) 
}

BREAKPOINT { 
        SOLVE states METHOD derivimplicit
if (ko > peak) { ko = peak}
  if (ko < 2) { ko = 2}
}

DERIVATIVE states {      
 
        ko'= (1e4*(KAF*ik))/(F*dep)     : + (koinf-ko)/tck    
}