Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nature Communications, accepted
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
TITLE Cortical M current
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron
:
:   M-current, responsible for the adaptation of firing rate and the 
:   afterhyperpolarization (AHP) of cortical pyramidal cells
:
:   First-order model described by hodgkin-Hyxley like equations.
:   K+ current, activated by depolarization, noninactivating.
:
:   Model taken from Yamada, W.M., Koch, C. and Adams, P.R.  Multiple 
:   channels and calcium dynamics.  In: Methods in Neuronal Modeling, 
:   edited by C. Koch and I. Segev, MIT press, 1989, p 97-134.
:
:   See also: McCormick, D.A., Wang, Z. and Huguenard, J. Neurotransmitter 
:   control of neocortical neuronal activity and excitability. 
:   Cerebral Cortex 3: 387-398, 1993.
:
:   Written by Alain Destexhe, Laval University, 1995
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX km
	USEION k READ ek WRITE ik
        RANGE gkbar, m_inf, tau_m, ik, taumax

}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}


PARAMETER {
	v		(mV)
	celsius = 36    (degC)
	ek		(mV)
	gkbar	= 1e-6	(mho/cm2)
	taumax	= 1000	(ms)		: peak value of tau
}



STATE {
	m
}

ASSIGNED {
	ik	(mA/cm2)
	m_inf
	tau_m	(ms)
	tau_peak	(ms)
	tadj
}

BREAKPOINT {
	SOLVE states METHOD euler
	ik = gkbar * m * (v - ek)
}

DERIVATIVE states { 
	evaluate_fct(v)

	m' = (m_inf - m) / tau_m
}

UNITSOFF
INITIAL {
	evaluate_fct(v)
	m = 0
:
:  The Q10 value is assumed to be 2.3
:
        tadj = 2.3 ^ ((celsius-36)/10)
	tau_peak = taumax / tadj
}

PROCEDURE evaluate_fct(v(mV)) {

	m_inf = 1 / ( 1 + exptable(-(v+35)/10) )
	tau_m = tau_peak / ( 3.3 * exptable((v+35)/20) + exptable(-(v+35)/20) )
}
UNITSON


FUNCTION exptable(x) { 
	TABLE  FROM -25 TO 25 WITH 10000

	if ((x > -25) && (x < 25)) {
		exptable = exp(x)
	} else {
		exptable = 0.
	}
}