Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nature Communications, accepted
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
: HH TEA-sensitive Purkinje potassium current
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron

NEURON {
	SUFFIX kpkj
	USEION k READ ek WRITE ik
	RANGE gkbar
	GLOBAL minf, hinf, mtau, htau
}

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER {
	v (mV)

	gkbar = .004	(mho/cm2)

	mivh = -24	(mV)
	mik = 15.4	(1)
	mty0 = .00012851 	
	mtvh1 = 100.7	(mV)
	mtk1 = 12.9	(1)
	mtvh2 = -56.0	(mV)
	mtk2 = -23.1	(1)
	
	hiy0 = .31	
	hiA = .78
	hivh = -5.802	(mV)
	hik = 11.2	(1)

	ek
Q10 = 3 (1) 
  Q10TEMP = 22 (degC) 
}

ASSIGNED {
	ik		(mA/cm2)
	minf
	mtau		(ms)
	hinf
	htau		(ms)
 celsius (degC) 
  qt (1) 

}

STATE {
	m
	h
}

INITIAL {
	rates(v)
	m = minf
	h = hinf
:qt = Q10^((celsius-Q10TEMP)/10) 
qt = 1
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ik = gkbar * m^3 * h * (v - ek)
}

DERIVATIVE states {
	rates(v)
	m' = (minf - m) / mtau
	h' = (hinf - h) / htau
}

PROCEDURE rates( Vm (mV)) {
	LOCAL v
	v = Vm + 11	: Account for Junction Potential
	minf = 1/(1+exp(-(v-mivh)/mik))
	mtau = ((1000) * mtau_func(v)) / qt
	hinf = hiy0 + hiA/(1+exp((v-hivh)/hik))
	htau = (1000 * htau_func(v)) / qt
}

FUNCTION mtau_func (v (mV)) (ms) {
	if (v < -35) {
		mtau_func = (3.4225e-5+.00498*exp(-v/-28.29))*3
	} else {
		mtau_func = (mty0 + 1/(exp((v+mtvh1)/mtk1)+exp((v+mtvh2)/mtk2)))
	}
}

FUNCTION htau_func(Vm (mV)) (ms) {
	if ( Vm > 0) {
		htau_func = .0012+.0023*exp(-.141*Vm)
	} else {
		htau_func = 1.2202e-05 + .012 * exp(-((Vm-(-56.3))/49.6)^2)
	}
}