Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nature Communications, accepted
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
: HH Low TEA-sensitive Purkinje potassium current
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron

NEURON {
	SUFFIX kpkj2
	USEION k READ ek WRITE ik
	RANGE gkbar
	GLOBAL ninf, ntau
}

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER {
	v		(mV)
	gkbar = .002	(mho/cm2)
	
	nivh = -24	(mV)
	nik = 20.4
	
	ek
Q10 = 3 (1) 
  Q10TEMP = 22 (degC) 

}

ASSIGNED {
	ik
	ninf
	ntau		(ms)
celsius (degC) 
  qt (1) 

}

STATE {
	n
}

INITIAL {
	rates(v)
	n = ninf
: qt = Q10^((celsius-Q10TEMP)/10) 
qt = 1
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ik = gkbar * n^4 * (v - ek)
}

DERIVATIVE states {
	rates(v)
	n' = (ninf - n) / ntau
}

PROCEDURE rates(Vm (mV)) {
	LOCAL v
	v = Vm + 11	: Account for Junction Potential
	ninf = 1/(1+exp(-(v-nivh)/nik))
	ntau = (1000 * ntau_func(v)) / qt
}

FUNCTION ntau_func(v (mV)) {
	if (v < -20) {
		ntau_func = .000688 + 1/(exp((v+64.2)/6.5)+exp((v-141.5)/-34.8))
	} else {
		ntau_func = .00016 + .0008*exp(-.0267 * v)
	}
}