Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nature Communications, accepted
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[6]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(0,0,0)}
{
save_window_ = new Graph(0)
save_window_.size(0,100000,-80,50)
scene_vector_[2] = save_window_
{save_window_.view(0, -80, 100000, 130, 700, 229, 300.6, 200.8)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("v(.5)", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,2000,-1,1)
scene_vector_[3] = save_window_
{save_window_.view(0, -1, 2000, 2, 456, 96, 300.6, 200.8)}
graphList[1].append(save_window_)
save_window_.save_name("graphList[1].")
save_window_.addvar("soma.nai( 0.5 )", 3, 1, 0.8, 0.9, 2)
}
{
xpanel("RunControl", 0)
v_init = -65
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1e+06
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 100000
xvalue("t","t", 2 )
tstop = 100000
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.025
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 10
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 251.63
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(132,174)
}
{
save_window_ = new Graph(0)
save_window_.size(-1000,100000,-68,21)
scene_vector_[4] = save_window_
{save_window_.view(-1000, -68, 101000, 89, 1074, 90, 300.6, 200.8)}
graphList[1].append(save_window_)
save_window_.save_name("graphList[1].")
save_window_.addvar("Couple.v( 0.5 )", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,100000,-1,1)
scene_vector_[5] = save_window_
{save_window_.view(0, -1, 100000, 2, 344, 369, 300.6, 200.8)}
graphList[1].append(save_window_)
save_window_.save_name("graphList[1].")
save_window_.addvar("soma.ipumpmax_pump( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addvar("soma.ipumpmax_mypumpsoma( 0.5 )", 2, 1, 0.8, 0.9, 2)
save_window_.addvar("Couple.ipumpmax_newnew( 0.5 )", 4, 1, 0.8, 0.9, 2)
save_window_.addvar("Couple.ipumpmax_mypump( 0.5 )", 3, 1, 0.8, 0.9, 2)
}
objectvar scene_vector_[1]
{doNotify()}