Library of biophysically detailed striatal projection neurons (Lindroos and Hellgren Kotaleski 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266775
Library of compartmentalized models used to investigate dendritic integration in striatal projection neurons under neuromodulation.
Reference:
1 . Lindroos R, Hellgren Kotaleski J (2020) Predicting complex spikes in striatal projection neurons of the direct pathway following neuromodulation by acetylcholine and dopamine. Eur J Neurosci [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Striatum; Hippocampus; Basal ganglia;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; Striatal projection neuron;
Channel(s): I M; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Acetylcholine; Dopamine;
Simulation Environment: NEURON; Python;
Model Concept(s): Active Dendrites; Detailed Neuronal Models; Neuromodulation; Synaptic Plasticity; Activity Patterns; Soma-dendrite cross-talk;
Implementer(s): Lindroos, Robert [robert.lindroos at ki.se]; Filipovic, Marko;
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; I M; I Potassium; Acetylcholine; Dopamine;
TITLE Fast transient sodium current

NEURON {
    SUFFIX naf_ms
    USEION na READ ena WRITE ina
    RANGE gbar, gna, ina
}

UNITS {
    (S) = (siemens)
    (mV) = (millivolt)
    (mA) = (milliamp)
}

PARAMETER {
    gbar = 0.0 (S/cm2) 
    :q = 1	: room temperature 22 C
    q = 1.8	: body temperature 35 C
}

ASSIGNED {
    v (mV)
    ena (mV)
    ina (mA/cm2)
    gna (S/cm2)
    minf
    mtau (ms)
    hinf
    htau (ms)
}

STATE { m h }

BREAKPOINT {
    SOLVE states METHOD cnexp
    gna = gbar*m*m*m*h
    ina = gna*(v-ena)
}

DERIVATIVE states {
    rates()
    m' = (minf-m)/mtau*q
    h' = (hinf-h)/htau*q
}

INITIAL {
    rates()
    m = minf
    h = hinf
}

PROCEDURE rates() {
    UNITSOFF
    :minf = 1/(1+exp((v-(-25.5))/(-9.2)))
    :mtau = 0.33+1/(exp((v-(-62))/14)+exp((v-(-60))/(-17)))
    :hinf = 1/(1+exp((v-(-63.2))/6))
    :htau = 0.6+1/(exp((v-(-44))/8)+exp((v-(-99))/(-44)))
    minf = 1/(1+exp((v-(-25))/(-10)))
    mtau = 0.33+1/(exp((v-(-62))/14)+exp((v-(-60))/(-17)))
    hinf = 1/(1+exp((v-(-62))/6))
    htau = 0.6+1/(exp((v-(-44))/8)+exp((v-(-99))/(-44)))
    UNITSON
}

COMMENT

Original data by Ogata and Tatebayashi (1990) [1]. Neostriatal neurons
of medium size (putative medium spiny neurons) freshly isolated from
the adult guinea pig brain (either sex, 200 g). Data compensated for
the liquid junction potential (-13 mV). Experiments carried out at room
temperature (22 C). Conductance fitted by m3h kinetics.

Smooth fit of mtau and htau data [1] by Alexander Kozlov <akozlov@kth.se>
assuming natural logarithm of tau values [1, Figs. 5 and 9] and
temperature correction factor of 1.8 [2] as suggested by Robert Lindroos
<robert.lindroos@ki.se>.

[1] Ogata N, Tatebayashi H (1990) Sodium current kinetics in freshly
isolated neostriatal neurones of the adult guinea pig. Pflugers Arch
416(5):594-603.

[2] Schwarz JR (1986) The effect of temperature on Na currents in rat
myelinated nerve fibres. Pflugers Arch. 406(4):397-404.

ENDCOMMENT