Purkinje neuron network (Zang et al. 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Both spike rate and timing can transmit information in the brain. Phase response curves (PRCs) quantify how a neuron transforms input to output by spike timing. PRCs exhibit strong firing-rate adaptation, but its mechanism and relevance for network output are poorly understood. Using our Purkinje cell (PC) model we demonstrate that the rate adaptation is caused by rate-dependent subthreshold membrane potentials efficiently regulating the activation of Na+ channels. Then we use a realistic PC network model to examine how rate-dependent responses synchronize spikes in the scenario of reciprocal inhibition-caused high-frequency oscillations. The changes in PRC cause oscillations and spike correlations only at high firing rates. The causal role of the PRC is confirmed using a simpler coupled oscillator network model. This mechanism enables transient oscillations between fast-spiking neurons that thereby form PC assemblies. Our work demonstrates that rate adaptation of PRCs can spatio-temporally organize the PC input to cerebellar nuclei.
1 . Zang Y, Hong S, De Schutter E (2020) Firing rate-dependent phase responses of Purkinje cells support transient oscillations. Elife [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell;
Gap Junctions:
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Phase Response Curves; Action Potentials; Spatio-temporal Activity Patterns; Synchronization; Action Potential Initiation; Oscillations;
Implementer(s): Zang, Yunliang ; Hong, Sungho [shhong at oist.jp];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell;
%READ_WRITE_ENTIRE_TEXTFILE Read or write a whole text file to/from memory
% Read or write an entire text file to/from memory, without leaving the
% file open if an error occurs.
% Reading:
%   fstrm = read_write_entire_textfile(fname)
% Writing:
%   read_write_entire_textfile(fname, fstrm)
%   fname - Pathname of text file to be read in.
%   fstrm - String to be written to the file, including carriage returns.
%   fstrm - String read from the file. If an fstrm input is given the
%           output is the same as that input. 

function fstrm = read_write_entire_textfile(fname, fstrm)
modes = {'rt', 'wt'};
writing = nargin > 1;
fh = fopen(fname, modes{1+writing});
if fh == -1
    error('Unable to open file %s.', fname);
    if writing
        fwrite(fh, fstrm, 'char*1');
        fstrm = fread(fh, '*char')';
catch ex