Cl- homeostasis in immature hippocampal CA3 neurons (Kolbaev et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266811
Model used for the revision of the manuscript. Insertion of a passive Cl- flux and an active Cl-accumulation. Parameters adapted to match the properties of [Cl-]i determined in immature rat CA3 neurons in-vitro.
Reference:
1 . Kolbaev SN, Mohapatra N, Chen R, Lombardi A, Staiger JF, Luhmann HJ, Jedlicka P, Kilb W (2020) NKCC-1 mediated Cl- uptake in immature CA3 pyramidal neurons is sufficient to compensate phasic GABAergic inputs. Sci Rep 10:18399 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s): NKCC1;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity; Homeostasis;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Kilb, Werner [wkilb at uni-mainz.de];
Search NeuronDB for information about:  GabaA; NKCC1; Gaba;
/
Models_Kolbaev et al Scientific Reports Revision
Readme.txt
asin.mod *
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
tonic.mod *
vecevent.mod *
Add_tonic_Cl-current.hoc
anyl.m
Block-Tonic-Cl-current.ses
Cell_1_SciRep_ShrinkCorr.hoc
Determine_cl-Flux_w-o_NKCC1_rig.ses
Determine_R_input_rig.ses
Determine_tau_NKCC1_rig.ses
Display_Phasic-Cl-current.ses
Display_Phasic-Cl-current_for_Charge_Transfer.ses
Display_Phasic-Cl-current_forFreq.ses
Phasic_GABA_activity_Div_Freq.hoc
Phasic_GABA_activity_Div_gGABA.hoc
Phasic_GABA_activity_only_soma_Backregul.hoc
Phasic_GABA_activity_only_soma_Div_Freq.hoc
Phasic_GABA_activity_only_soma_Div_gGABA.hoc
Phasic_GABA_activity_only_soma_for_Charge_Transfer.hoc
Phasic_GABA_activity_only_soma_PlaceSynapsesForFigure.hoc
start_Add_Tonic_Cl-currents.hoc
start_Block_Tonic_Cl-currents.hoc
start_Phasic_Cl-currents.hoc
start_Phasic_Cl-currents_for _Change-transfer.hoc
start_Phasic_GABA_activity_Div_Freq.hoc
start_Phasic_GABA_activity_only_soma_Backregul.hoc
start_Phasic_GABA_activity_only_soma_Div_Freq.hoc
start_Phasic_GABA_activity_only_soma_Div_gGABA.hoc
Switch_off_tonic_Cl-current.hoc
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[6]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(690,990,1)}

//Begin PointProcessManager
{
load_file("pointman.hoc")
}
{
soma ocbox_ = new PointProcessManager(0)
}
{object_push(ocbox_)}
{
mt.select("SEClamp") i = mt.selected()
ms[i] = new MechanismStandard("SEClamp")
ms[i].set("rs", 1, 0)
ms[i].set("dur1", 9e+006, 0)
ms[i].set("amp1", -70, 0)
ms[i].set("dur2", 0, 0)
ms[i].set("amp2", 0, 0)
ms[i].set("dur3", 0, 0)
ms[i].set("amp3", 0, 0)
mt.select("SEClamp") i = mt.selected() maction(i)
hoc_ac_ = 0.5
sec.sec move() d1.flip_to(0)
}
{object_pop() doNotify()}
{
ocbox_ = ocbox_.v1
ocbox_.map("PointProcessManager", 0, 558, 308.7, 335.7)
}
objref ocbox_
//End PointProcessManager

{
xpanel("RunControl", 0)
v_init = -70
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 142400
xvalue("t","t", 2 )
tstop = 1e+007
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 10
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 0.001
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 35.03
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(0,114)
}
{
save_window_ = new Graph(0)
save_window_.size(0,1e+006,-75,-65)
scene_vector_[3] = save_window_
{save_window_.view(0, -75, 1e+007, 10, 648, 60, 681.3, 200.8)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("v(.5)", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,11e+006,10,15)
scene_vector_[4] = save_window_
{save_window_.view(0, 10, 1e+007, 5, 654, 726, 677.7, 144.1)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("soma.cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,1e+007,-0.004,0.004)
scene_vector_[5] = save_window_
{save_window_.view(0, -0.004, 1e+007, 0.008, 648, 390, 682.2, 196.3)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("SEClamp[0].i", 1, 1, 0.8, 0.9, 2)
}
{
xpanel("cldif_CA3_NKCC1_HCO3 (Globals)", 0)
DCl_cldif_CA3_NKCC1_HCO3 = 2
xvalue("DCl_cldif_CA3_NKCC1_HCO3","DCl_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
tau_NKCC1_cldif_CA3_NKCC1_HCO3 = 78500
xvalue("tau_NKCC1_cldif_CA3_NKCC1_HCO3","tau_NKCC1_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
tau_passive_cldif_CA3_NKCC1_HCO3 = 9.9e+019
xvalue("tau_passive_cldif_CA3_NKCC1_HCO3","tau_passive_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
tau_hco3_cldif_CA3_NKCC1_HCO3 = 1000
xvalue("tau_hco3_cldif_CA3_NKCC1_HCO3","tau_hco3_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
cli_Start_cldif_CA3_NKCC1_HCO3 = 12.6
xvalue("cli_Start_cldif_CA3_NKCC1_HCO3","cli_Start_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
hco3i_Start_cldif_CA3_NKCC1_HCO3 = 14.1
xvalue("hco3i_Start_cldif_CA3_NKCC1_HCO3","hco3i_Start_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
vrat_cldif_CA3_NKCC1_HCO3[0] = 0.239983
xvalue("vrat_cldif_CA3_NKCC1_HCO3[0]","vrat_cldif_CA3_NKCC1_HCO3[0]", 0,"", 0, 1 )
xpanel(0,846)
}
objectvar scene_vector_[1]
{doNotify()}