Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266823
"... we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval..."
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2021) Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons PLOS Comp Bio
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Short-term Synaptic Plasticity; Synaptic Plasticity; Chloride regulation;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Kilb, Werner [wkilb at uni-mainz.de];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
_For Zip -Neuron-Models_AMPA-GABA
Fig3f-h_Ball-stick_AP_Effect
borgka.mod *
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
kahp.mod *
kdr.mod *
nahh.mod *
vecevent.mod *
cell_soma_dendrite.hoc
cell_soma_dendrite_AP.hoc
cell_soma_dendrite_bpAP.hoc
cell_soma_dendrite_HH.hoc
cell_soma_dendrite_VGCa.hoc
GABA-AMPA_BS_defined_Conditions_for Plots.hoc
GABA-AMPA_BS_Dif-gAMPA_Var-Cl.hoc
init_Cldif.hoc *
Isolated_Dendrite.ses *
start_GABA-AMPA_BS_Dif-gAMPA_Var-Cl.hoc *
start_GABA-AMPA_BS-AP_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-bpAP_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-HH_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-VGCa_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-wo_Dif-gAMPA_Var-Cl.hoc *
start_single_GABA-AMPA.hoc
start_single_GABA-AMPA_AP.hoc
start_single_GABA-AMPA_HH.hoc
test_a.hoc *
                            
// Simulation and analysis of Spatiotemporal Component of Cl- Gradients in a isolated dendrite
// Here simulation of different AMPA Synapses
// Here application in a simple Ball and Stick Model
// Here one condition adapted manually - used to generate plots for figures.


// Define Cl--Concentration
   CL_CONC = 5  // [Cl-]i in mM

// Determination Parameters GABA
  ANZAHL_GABA = 1           //Anzahl der synaptischen Pulse
  G_GABA = 0.000789 *0      //Value from Lombardi et al 2018 
  P_GABA = 0.18
  DECAY_GABA = 37           //Value from Lombardi et al 2018
  GABA_SYN_LOCATION = 0.5   // Position GABA Synapse for Pulses
  ONSET_GABA_PULSE = 20  

// Determination Parameters AMPA
  ANZAHL_AMPA = 1                   //Anzahl der synaptischen Pulse
  G_AMPA = 0.000305 * 20             //Value from Lombardi et al 2018 
  E_AMPA = 0                        // Reversal Potential of Exp2Syn
  DECAY_AMPA = 11                //Value from Lombardi et al 2018
  AMPA_SYN_LOCATION = 0.5   // Position GABA Synapse for Pulses
  ONSET_AMPA_PULSE = 25  

//----- Define run parameters ---------------------
  tstop = 300   // Duration
  v_init = -60   // Initial voltage
  dt = 0.5      // Step Interval in ms


// Define spatial properties of dendrite
  ANZAHL_NODES = 100

// Identification of the node with the GABA Synapse
  SynPos = ANZAHL_NODES*GABA_SYN_LOCATION

//----- Insert synapses -------------------------GG0789
// Determination of GABA Synapse
  objref gabasyn
  dend {
    // insert GABA synapse 
    gabasyn = new gaba(GABA_SYN_LOCATION)
    gabasyn.tau1 = 0.1 
    gabasyn.tau2 = DECAY_GABA
    gabasyn.P = P_GABA
  }

// Definition of synaptic Stimuli
  objref stimGABApuls //Pulssequenz GABA
  stimGABApuls = new NetStim(GABA_SYN_LOCATION)
  stimGABApuls.number = ANZAHL_GABA
  stimGABApuls.start = ONSET_GABA_PULSE

// Linkage of synaptic Inputs
  objref synpulsegaba

// Determination of AMPA Synapse
  objref AMPAsyn
  dend {
    // insert AMPA synapse 
    AMPAsyn = new Exp2Syn(AMPA_SYN_LOCATION)
    AMPAsyn.tau1 = 0.1
    AMPAsyn.tau2 = DECAY_AMPA 
    AMPAsyn.e = E_AMPA
  }

// Definition of synaptic Stimuli
  objref stimAMPApuls //Pulssequenz AMPA
  stimAMPApuls = new NetStim(AMPA_SYN_LOCATION)
  stimAMPApuls.number = ANZAHL_AMPA
  stimAMPApuls.start = ONSET_AMPA_PULSE

// Linkage of synaptic Inputs
  objref synpulseampa


// Update Cl- homeostasis in all compartments ----------------------------------------------
  forsec all {
    cli0_cldif_CA3_NKCC1_HCO3 = CL_CONC
    cli_Start_cldif_CA3_NKCC1_HCO3 = CL_CONC
    cli_cldif_CA3_NKCC1_HCO3 = CL_CONC
  }

// Assign Value to Synapse
  dend {
      synpulsegaba = new NetCon(stimGABApuls, gabasyn, 0, 0, G_GABA)
      synpulseampa = new NetCon(stimAMPApuls, AMPAsyn, 0, 0, G_AMPA)
  }

// Run Simulation --------------------------------------------------------
  run()