Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266823
"... we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval..."
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2021) Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons PLOS Comp Bio
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Short-term Synaptic Plasticity; Synaptic Plasticity; Chloride regulation;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Kilb, Werner [wkilb at uni-mainz.de];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
_For Zip -Neuron-Models_AMPA-GABA
Fig3f-h_Ball-stick_AP_Effect
borgka.mod *
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
kahp.mod *
kdr.mod *
nahh.mod *
vecevent.mod *
cell_soma_dendrite.hoc
cell_soma_dendrite_AP.hoc
cell_soma_dendrite_bpAP.hoc
cell_soma_dendrite_HH.hoc
cell_soma_dendrite_VGCa.hoc
GABA-AMPA_BS_defined_Conditions_for Plots.hoc
GABA-AMPA_BS_Dif-gAMPA_Var-Cl.hoc
init_Cldif.hoc *
Isolated_Dendrite.ses *
start_GABA-AMPA_BS_Dif-gAMPA_Var-Cl.hoc *
start_GABA-AMPA_BS-AP_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-bpAP_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-HH_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-VGCa_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-wo_Dif-gAMPA_Var-Cl.hoc *
start_single_GABA-AMPA.hoc
start_single_GABA-AMPA_AP.hoc
start_single_GABA-AMPA_HH.hoc
test_a.hoc *
                            
TITLE T-calcium channel
: T-type calcium channel


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

	FARADAY = 96520 (coul)
	R = 8.3134 (joule/degC)
	KTOMV = .0853 (mV/degC)
}

PARAMETER {
	v (mV)
	celsius = 6.3	(degC)
	gcatbar=.003 (mho/cm2)
	cai (mM)
	cao (mM)
}


NEURON {
	SUFFIX cat
	USEION ca READ cai,cao WRITE ica
        RANGE gcatbar,cai
}

STATE {
	m h 
}

ASSIGNED {
	ica (mA/cm2)
        gcat (mho/cm2)
}

INITIAL {
      m = minf(v)
      h = hinf(v)
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gcat = gcatbar*m*m*h
	ica = gcat*ghk(v,cai,cao)

}

DERIVATIVE states {	: exact when v held constant
	m' = (minf(v) - m)/m_tau(v)
	h' = (hinf(v) - h)/h_tau(v)
}


FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL nu,f

        f = KTF(celsius)/2
        nu = v/f
        ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}

FUNCTION KTF(celsius (DegC)) (mV) {
        KTF = ((25./293.15)*(celsius + 273.15))
}


FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

FUNCTION hinf(v(mV)) {
	LOCAL a,b
	TABLE FROM -150 TO 150 WITH 200
	a = 1.e-6*exp(-v/16.26)
	b = 1/(exp((-v+29.79)/10.)+1.)
	hinf = a/(a+b)
}

FUNCTION minf(v(mV)) {
	LOCAL a,b
	TABLE FROM -150 TO 150 WITH 200
        
	a = 0.2*(-1.0*v+19.26)/(exp((-1.0*v+19.26)/10.0)-1.0)
	b = 0.009*exp(-v/22.03)
	minf = a/(a+b)
}

FUNCTION m_tau(v(mV)) (ms) {
	LOCAL a,b
	TABLE FROM -150 TO 150 WITH 200
	a = 0.2*(-1.0*v+19.26)/(exp((-1.0*v+19.26)/10.0)-1.0)
	b = 0.009*exp(-v/22.03)
	m_tau = 1/(a+b)
}

FUNCTION h_tau(v(mV)) (ms) {
	LOCAL a,b
        TABLE FROM -150 TO 150 WITH 200
	a = 1.e-6*exp(-v/16.26)
	b = 1/(exp((-v+29.79)/10.)+1.)
	h_tau = 1/(a+b)
}