Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266823
"... we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval..."
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2021) Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons PLOS Comp Bio
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Short-term Synaptic Plasticity; Synaptic Plasticity; Chloride regulation;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Kilb, Werner [wkilb at uni-mainz.de];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
_For Zip -Neuron-Models_AMPA-GABA
Fig3f-h_Ball-stick_AP_Effect
borgka.mod *
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
kahp.mod *
kdr.mod *
nahh.mod *
vecevent.mod *
cell_soma_dendrite.hoc
cell_soma_dendrite_AP.hoc
cell_soma_dendrite_bpAP.hoc
cell_soma_dendrite_HH.hoc
cell_soma_dendrite_VGCa.hoc
GABA-AMPA_BS_defined_Conditions_for Plots.hoc
GABA-AMPA_BS_Dif-gAMPA_Var-Cl.hoc
init_Cldif.hoc *
Isolated_Dendrite.ses *
start_GABA-AMPA_BS_Dif-gAMPA_Var-Cl.hoc *
start_GABA-AMPA_BS-AP_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-bpAP_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-HH_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-VGCa_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-wo_Dif-gAMPA_Var-Cl.hoc *
start_single_GABA-AMPA.hoc
start_single_GABA-AMPA_AP.hoc
start_single_GABA-AMPA_HH.hoc
test_a.hoc *
                            
TITLE Borg-Graham type generic K-DR channel
: INACTIVATING

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek		 (mV)
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=-32   (mV)
        vhalfl=-61   (mV)
        a0l=0.001      (/ms)
        a0n=0.03      (/ms)
        zetan=-5    (1)
        zetal=2    (1)
        gmn=0.4   (1)
        gml=1.0   (1)
}


NEURON {
	SUFFIX borgkdr
	USEION k READ ek WRITE ik
        RANGE gkdrbar,gkdr
        GLOBAL ninf,linf,taun,taul
}

STATE {
	n
        l
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        gkdr
        taun
        taul
}

INITIAL {
        rates(v)
        n=ninf
        l=linf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n^3*l
	ik = gkdr*(v-ek)

}

FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {  
        rates(v)
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,q10
        q10=3^((celsius-30)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(q10*a0n*(1+a))
        a = alpl(v)
        linf = 1/(1+a)
        taul = betl(v)/(q10*a0l*(1 + a))
}