Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. accepted)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology (accepted)
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
DuraBernal
mod
ar_traub.mod *
cadad.mod *
cadyn.mod *
cagk.mod *
cal_mh.mod *
cal_mig.mod *
can_mig.mod *
canin.mod *
cat_mig.mod *
cat_traub.mod *
catcb.mod *
gabab.mod *
h_BS.mod *
h_harnett.mod
h_kole.mod *
h_migliore.mod *
HCN1.mod *
hin.mod *
IC.mod *
ican_sidi.mod *
IKsin.mod *
kap_BS.mod *
kapcb.mod *
kapin.mod *
kBK.mod *
kctin.mod *
kdmc_BS.mod *
kdr_BS.mod *
kdrin.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafx.mod *
nap_sidi.mod *
nax_BS.mod *
savedist.mod *
vecstim.mod *
ghk.inc *
misc.h
parameters.multi *
                            
: $Id: MyExp2SynNMDABB.mod,v 1.4 2010/12/13 21:28:02 samn Exp $ 
NEURON {
:  THREADSAFE
  POINT_PROCESS MyExp2SynNMDABB
  RANGE e, i, iNMDA, s, sNMDA, r, tau1NMDA, tau2NMDA, Vwt, smax, sNMDAmax, g
  NONSPECIFIC_CURRENT iNMDA
  USEION ca READ cai,cao WRITE ica
  GLOBAL fracca
  RANGE ica
}

UNITS {
  (nA) = (nanoamp)
  (mV) = (millivolt)
  (uS) = (microsiemens)
  FARADAY = (faraday) (coulomb)
  R = (k-mole) (joule/degC)
}

PARAMETER {
  tau1NMDA = 15  (ms)
  tau2NMDA = 150 (ms)
  e        = 0	(mV)
  r        = 1
  smax     = 1e9 (1)
  sNMDAmax = 1e9 (1)  
  Vwt   = 0 : weight for inputs coming in from vector
  fracca = 0.13 : fraction of current that is ca ions; Srupuston &al 95
}

ASSIGNED {
  v       (mV)
  iNMDA   (nA)
  sNMDA   (1)
  mgblock (1)
  factor2 (1)	
  ica	  (nA)
  cai     (mM)
  cao     (mM)
  g       (umho)
}

STATE {
  A2 (1)
  B2 (1)
}

INITIAL {
  LOCAL tp
  Vwt = 0 : testing
  if (tau1NMDA/tau2NMDA > .9999) {
    tau1NMDA = .9999*tau2NMDA
  }
  A2 = 0
  B2 = 0	
  tp = (tau1NMDA*tau2NMDA)/(tau2NMDA - tau1NMDA) * log(tau2NMDA/tau1NMDA)
  factor2 = -exp(-tp/tau1NMDA) + exp(-tp/tau2NMDA)
  factor2 = 1/factor2  
}

BREAKPOINT {
  LOCAL iTOT
  SOLVE state METHOD cnexp
  : Jahr Stevens 1990 J. Neurosci
  mgblock = 1.0 / (1.0 + 0.28 * exp(-0.062(/mV) * v) )
  sNMDA = B2 - A2
  if (sNMDA>sNMDAmax) {sNMDA=sNMDAmax}: saturation

  :iTOT = sNMDA * (v - e) * mgblock  
  :iNMDA = iTOT * (1-fracca)
  :ica = iTOT * fracca
  
  iNMDA = sNMDA * (v - e) * mgblock * (1-fracca)
  if(fracca>0.0){ica =   sNMDA * ghkg(v,cai,cao,2) * mgblock * fracca}
  g = sNMDA * mgblock
}

INCLUDE "ghk.inc"

DERIVATIVE state {
  A2' = -A2/tau1NMDA
  B2' = -B2/tau2NMDA
}

NET_RECEIVE(w (uS)) {LOCAL ww
  ww=w
  :printf("NMDA Spike: %g\n", t)
  if(r>=0){ : if r>=0, g = NMDA*r
    A2 = A2 + factor2*ww*r
    B2 = B2 + factor2*ww*r
  }
}