Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology 125:1501-1516 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
AckerAntic
mod
ampa.mod *
ca.mod *
Ca_HVA.mod *
Cad.mod *
cadyn.mod *
CaDynamics_E2.mod *
canin.mod *
CaT.mod *
gabaa.mod *
gabab.mod *
Gfluctp.mod *
glutamate.mod *
h_kole.mod *
h_migliore.mod *
hin.mod *
Ih.mod *
IKsin.mod *
IL.mod *
kadist.mod *
kapin.mod *
kaprox.mod *
kBK.mod *
kctin.mod *
kdrin.mod *
kv.mod *
MyExp2SynBB.mod *
na.mod *
nafx.mod *
NMDA.mod *
NMDAeee.mod *
NMDAmajor.mod
PlateauConductance.mod *
SK_E2.mod *
vecstim.mod *
vmax.mod *
ghk.inc *
                            
COMMENT
T-type Ca channel
ca.mod to lead to thalamic ca current inspired by destexhe and huguenrd
Uses fixed eca instead of GHK eqn
changed from (AS Oct0899)
changed for use with Ri18  (B.Kampa 2005)

added DERIVATIVE block for use with cvode (C.Acker 2008)
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX it
	USEION ca READ eca WRITE ica
	RANGE m, h, gca, gbar, vshift, v12m, v12h, vh1, vh2, ah, am, vm1, vm2
	RANGE minf, hinf, mtau, htau, inactF, actF
	GLOBAL  vmin,vmax, vwm, vwh, wm1, wm2, wh1, wh2
}

PARAMETER {
	gbar = 0.0008 (mho/cm2)	: 0.12 mho/cm2
	vshift = 0	(mV)		: voltage shift (affects all)

	cao  = 2.5	(mM)	        : external ca concentration
	cai		(mM)

	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)

	v12m=50         	(mV)
	v12h=78         	(mV)
	vwm =7.4         	(mV)
	vwh=5.0         	(mV)
	am=3         	(mV)
	ah=85         	(mV)
	vm1=25         	(mV)
	vm2=100         	(mV)
	vh1=46         	(mV)
	vh2=405         	(mV)
	wm1=20         	(mV)
	wm2=15         	(mV)
	wh1=4         	(mV)
	wh2=50         	(mV)


}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
	PI	= (pi) (1)
}

ASSIGNED {
	ica 		(mA/cm2)
	gca		(pS/um2)
	eca		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}


STATE { m h }

INITIAL {
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
   SOLVE states METHOD cnexp
   gca = gbar*m*m*h
   ica = gca * (v - eca)
}

DERIVATIVE states {
   trates(v+vshift)
   m' =  (minf-m)/mtau
   h' =  (hinf-h)/htau
}

PROCEDURE trates(v) {
   TABLE minf, hinf, mtau, htau
   FROM vmin TO vmax WITH 199

   rates(v): not consistently executed from here if usetable == 1

}


PROCEDURE rates(v_) {
   LOCAL  a, b

   minf = 1.0 / ( 1 + exp(-(v_+v12m)/vwm) )
   hinf = 1.0 / ( 1 + exp((v_+v12h)/vwh) )

   mtau = ( am + 1.0 / ( exp((v_+vm1)/wm1) + exp(-(v_+vm2)/wm2) ) )
   htau = ( ah + 1.0 / ( exp((v_+vh1)/wh1) + exp(-(v_+vh2)/wh2) ) )
}