Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:279
In Destexhe, Neubig, Ulrich, and Huguenard (1998) experiments and models examine low threshold calcium current's (IT, or T-current) distribution in thalamocortical (TC) cells. Multicompartmental modeling supports the hypothesis that IT currents have a density at least several fold higher in the dendrites than the soma. The IT current contributes significantly to rebound bursts and is thought to have important network behavior consequences. See the paper for details. See also http://cns.iaf.cnrs-gif.fr Correspondance may be addressed to Alain Destexhe: Destexhe@iaf.cnrs-gif.fr
Reference:
1 . Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574-88 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell;
Channel(s): I Na,t; I T low threshold; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Bursting; Ion Channel Kinetics; Parameter Fitting; Simplified Models; Influence of Dendritic Geometry; Detailed Neuronal Models; Calcium dynamics; Rebound firing;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; I Na,t; I T low threshold; I K;
/
dendtc
cells
README
cadecay.mod *
hh2.mod *
ITGHK.mod *
VClamp.mod *
El.oc *
loc200.oc
loc3.oc *
locD.oc
mosinit.hoc *
rundemo.hoc
tc1_cc.oc
tc200_cc.oc
tc200_vc.oc
tc3_cc.oc
tcD_vc.oc
                            
TITLE Hippocampal HH channels
:
: Fast Na+ and K+ currents responsible for action potentials
: Iterative equations
:
: Equations modified by Traub, for Hippocampal Pyramidal cells, in:
: Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
:
: range variable vtraub adjust threshold
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX hh2
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	RANGE gnabar, gkbar, vtraub
	RANGE m_inf, h_inf, n_inf
	RANGE tau_m, tau_h, tau_n
	RANGE m_exp, h_exp, n_exp
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gnabar	= .003 	(mho/cm2)
	gkbar	= .005 	(mho/cm2)

	ena	= 50	(mV)
	ek	= -90	(mV)
	celsius = 36    (degC)
	dt              (ms)
	v               (mV)
	vtraub	= -63	(mV)
}

STATE {
	m h n
}

ASSIGNED {
	ina	(mA/cm2)
	ik	(mA/cm2)
	il	(mA/cm2)
	m_inf
	h_inf
	n_inf
	tau_m
	tau_h
	tau_n
	m_exp
	h_exp
	n_exp
	tadj
}


BREAKPOINT {
	SOLVE states
	ina = gnabar * m*m*m*h * (v - ena)
	ik  = gkbar * n*n*n*n * (v - ek)
}


:DERIVATIVE states {   : exact Hodgkin-Huxley equations
:	evaluate_fct(v)
:	m' = (m_inf - m) / tau_m
:	h' = (h_inf - h) / tau_h
:	n' = (n_inf - n) / tau_n
:}

PROCEDURE states() {	: exact when v held constant
	evaluate_fct(v)
	m = m + m_exp * (m_inf - m)
	h = h + h_exp * (h_inf - h)
	n = n + n_exp * (n_inf - n)
	VERBATIM
	return 0;
	ENDVERBATIM
}

UNITSOFF
INITIAL {
	m = 0
	h = 0
	n = 0
:
:  Q10 was assumed to be 3 for both currents
:
: original measurements at roomtemperature?

	tadj = 3.0 ^ ((celsius-36)/ 10 )
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	v2 = v - vtraub : convert to traub convention

	a = 0.32 * (13-v2) / ( exp((13-v2)/4) - 1)
	b = 0.28 * (v2-40) / ( exp((v2-40)/5) - 1)
	tau_m = 1 / (a + b) / tadj
	m_inf = a / (a + b)

	a = 0.128 * exp((17-v2)/18)
	b = 4 / ( 1 + exp((40-v2)/5) )
	tau_h = 1 / (a + b) / tadj
	h_inf = a / (a + b)

	a = 0.032 * (15-v2) / ( exp((15-v2)/5) - 1)
	b = 0.5 * exp((10-v2)/40)
	tau_n = 1 / (a + b) / tadj
	n_inf = a / (a + b)

	m_exp = 1 - exp(-dt/tau_m)
	h_exp = 1 - exp(-dt/tau_h)
	n_exp = 1 - exp(-dt/tau_n)
}

UNITSON