Thalamocortical augmenting response (Bazhenov et al 1998)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:37819
In the cortical model, augmenting responses were more powerful in the "input" layer compared with those in the "output" layer. Cortical stimulation of the network model produced augmenting responses in cortical neurons in distant cortical areas through corticothalamocortical loops and low-threshold intrathalamic augmentation. ... The predictions of the model were compared with in vivo recordings from neurons in cortical area 4 and thalamic ventrolateral nucleus of anesthetized cats. The known intrinsic properties of thalamic cells and thalamocortical interconnections can account for the basic properties of cortical augmenting responses. See reference for details. NEURON implementation note: cortical SU cells are getting slightly too little stimulation - reason unknown.
Reference:
1 . Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of thalamocortical augmenting responses. J Neurosci 18:6444-65 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I T low threshold; I A; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synchronization; Synaptic Integration;
Implementer(s): Lytton, William [bill.lytton at downstate.edu];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; I Na,t; I T low threshold; I A; I K,Ca; Gaba; Glutamate;
: $Id: burst.mod,v 1.35 2004/05/05 20:30:04 billl Exp $

NEURON { 
  ARTIFICIAL_CELL BURST
  RANGE interval, number, numbersav
  RANGE taum, refrac, m, refractory
  RANGE taua, adap, addad, fflag
  GLOBAL debug
}

PARAMETER {
  interval      = 10 (ms) <1e-9,1e9>: time between spikes (msec)
  number        = 10 <0,1e9>          : number of spikes
  taum = 10 (ms)
  taua = 100 (ms)
  addad = 0.2
  refrac = 200 (ms)
  debug = 0
  fflag           = 1             : don't change
}

ASSIGNED {
  event (ms)
  on
  end (ms)
  m
  adap
  numbersav
  t0m(ms)
  t0a(ms)
  refractory
}

INITIAL {
  on = 0
  m = 0
  adap = 1
  refractory = 0
  t0a = 0

  index = 0
  recval()
} 

NET_RECEIVE (w) {
  if (flag == 0) { : external event
    m = m*(1-(t - t0m)/taum) : linear decay of voltage
    t0m = t
    if (m>0) { m = m + w } else { m=w } : boost the voltage
    if (t0a>0) { adap = adap*(1-(t - t0a)/taua) }
    t0a = t
    if (m>1 && refractory==0) { : threshold: start burst  
      refractory=1
      on = 1
      event = t
      numbersav=number
      if (adap>1) { number=number/adap }
      end = t + 1e-6 + interval*(number-1)
      net_send(0, 1)
    }
  }
  if (flag == 1 && on == 1) { : generate a spike
    VERBATIM
    if (debug==1) {printf("a:%g,%g,%g\n",t, adap, t0a);}
    ENDVERBATIM
    if (t0a>0) { adap = adap*(1-(t - t0a)/taua) }
    t0a = t
    if (adap+addad>=1) { adap = adap + addad } else { adap=1.0 }
    net_event(t)
    event = event + interval*adap
    net_send(event - t, 1)
    if (event>end) { 
      net_send(refrac,2) 
      number=numbersav
      on = 0 
      m = 0 
    }
  }
  if (flag == 2) { refractory = 0 }
  recval()
}

INCLUDE "ppsav.inc"
INCLUDE "pointer.inc"