Thalamocortical augmenting response (Bazhenov et al 1998)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:37819
In the cortical model, augmenting responses were more powerful in the "input" layer compared with those in the "output" layer. Cortical stimulation of the network model produced augmenting responses in cortical neurons in distant cortical areas through corticothalamocortical loops and low-threshold intrathalamic augmentation. ... The predictions of the model were compared with in vivo recordings from neurons in cortical area 4 and thalamic ventrolateral nucleus of anesthetized cats. The known intrinsic properties of thalamic cells and thalamocortical interconnections can account for the basic properties of cortical augmenting responses. See reference for details. NEURON implementation note: cortical SU cells are getting slightly too little stimulation - reason unknown.
Reference:
1 . Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of thalamocortical augmenting responses. J Neurosci 18:6444-65 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I T low threshold; I A; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synchronization; Synaptic Integration;
Implementer(s): Lytton, William [bill.lytton at downstate.edu];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; I Na,t; I T low threshold; I A; I K,Ca; Gaba; Glutamate;
: $Id: HH2.mod,v 1.6 2004/06/06 16:00:30 billl Exp $
TITLE Hippocampal HH channels
:
: Fast Na+ and K+ currents responsible for action potentials
: Iterative equations
:
: Equations modified by Traub, for Hippocampal Pyramidal cells, in:
: Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
:
: range variable vtraub adjust threshold
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:
: Modified Oct 96 for compatibility with Windows: trap low values of arguments
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
  SUFFIX hh2ad
  USEION na READ ena WRITE ina
  USEION k READ ek WRITE ik
  RANGE gnabar, gkbar, vtraub, ikhh2, inahh2
  RANGE m_inf, h_inf, n_inf
  RANGE tau_m, tau_h, tau_n
  RANGE m_exp, h_exp, n_exp
}


UNITS {
  (mA) = (milliamp)
  (mV) = (millivolt)
}

PARAMETER {
  gnabar  = .003  (mho/cm2)
  gkbar   = .005  (mho/cm2)

  ena        (mV)
  ek        (mV)
  celsius    (degC)
  dt              (ms)
  v               (mV)
  vtraub  = -63   (mV)
}

STATE {
  m h n
}

ASSIGNED {
  ina     (mA/cm2)
  ik      (mA/cm2)
  il      (mA/cm2)
  inahh2     (mA/cm2)
  ikhh2      (mA/cm2)
  m_inf
  h_inf
  n_inf
  tau_m
  tau_h
  tau_n
  m_exp
  h_exp
  n_exp
  tadj
}


BREAKPOINT {
  SOLVE state METHOD cnexp
  inahh2 = gnabar * m*m*m*h * (v - ena)
  ikhh2  = gkbar * n*n*n*n * (v - ek)
  ina =   inahh2
  ik  =    ikhh2 
}


DERIVATIVE state {   : exact Hodgkin-Huxley equations
  evaluate_fct(v)
  m' = (m_inf - m) / tau_m
  h' = (h_inf - h) / tau_h
  n' = (n_inf - n) / tau_n
}

UNITSOFF
INITIAL {
  :
  :  Q10 was assumed to be 3 for both currents
  :
  tadj = 3.0 ^ ((celsius-36)/ 10 )
  evaluate_fct(v)

  m = m_inf
  h = h_inf
  n = n_inf
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

  v2 = v - vtraub : convert to traub convention

  :       a = 0.32 * (13-v2) / ( Exp((13-v2)/4) - 1)
  a = 0.32 * vtrap(13-v2, 4)
  :       b = 0.28 * (v2-40) / ( Exp((v2-40)/5) - 1)
  b = 0.28 * vtrap(v2-40, 5)
  tau_m = 1 / (a + b) / tadj
  m_inf = a / (a + b)

  a = 0.128 * Exp((17-v2)/18)
  b = 4 / ( 1 + Exp((40-v2)/5) )
  tau_h = 1 / (a + b) / tadj
  h_inf = a / (a + b)

  :       a = 0.032 * (15-v2) / ( Exp((15-v2)/5) - 1)
  a = 0.032 * vtrap(15-v2, 5)
  b = 0.5 * Exp((10-v2)/40)
  tau_n = 1 / (a + b) / tadj
  n_inf = a / (a + b)

  m_exp = 1 - Exp(-dt/tau_m)
  h_exp = 1 - Exp(-dt/tau_h)
  n_exp = 1 - Exp(-dt/tau_n)
}
FUNCTION vtrap(x,y) {
  if (fabs(x/y) < 1e-6) {
    vtrap = y*(1 - x/y/2)
  }else{
    vtrap = x/(Exp(x/y)-1)
  }
}

FUNCTION Exp(x) {
  if (x < -100) {
    Exp = 0
  }else{
    Exp = exp(x)
  }
}