MyFirstNEURON (Houweling, Sejnowski 1997)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3808
MyFirstNEURON is a NEURON demo by Arthur Houweling and Terry Sejnowski. Perform experiments from the book 'Electrophysiology of the Neuron, A Companion to Shepherd's Neurobiology, An Interactive Tutorial' by John Huguenard & David McCormick, Oxford University Press 1997, or design your own one or two cell simulation.
Reference:
1 . Huguenard J, McCormick DA, Shepherd GM (1997) Electrophysiology of the Neuron, A Companion to Shepherd's Neurobiology, An Interactive Tutorial. Electrophysiology of the Neuron
2 . Houweling AR, Sejnowski TJ (1997) Personal communication from Arthur Houweling.
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Activity Patterns; Bursting; Ion Channel Kinetics; Temporal Pattern Generation; Oscillations; Parameter Fitting; Detailed Neuronal Models; Tutorial/Teaching; Action Potentials; Sleep; Calcium dynamics;
Implementer(s): Houweling, Arthur [Arthur at Salk.edu];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium;
/
MyFirstNEURON
MyFirstNEURONmanual_files
readme.txt
ampa.mod
ampa2.mod
cadyn.mod
gabaA.mod
gabaA2.mod
gabaB.mod
gabaB2.mod
HH1.mod
HH2.mod
ia.mod *
iahp.mod
iahp2.mod *
ic.mod *
ican.mod
ih.mod *
il.mod *
im.mod *
it.mod *
it2.mod
leak.mod *
nmda.mod
nmda2.mod
synstim.mod
about.hoc
e1.par
e10.par
e11a.par
e11b.par
e12.par
e13.par
e14.par
e15a.par
e15b.par
e16a.par
e16b.par
e16c.par
e17a.par
e17b.par
e3.par
e5.par
e7.par
manual.htm
mcontrl1.hoc
mcontrl2.hoc
mcontrl3.hoc
methods.htm
mosinit.hoc
my1stnrn.hoc
parpanl1.hoc
parpanl2.hoc
parpanl3.hoc
plotcurr.hoc
                            
TITLE decay of submembrane calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: This file contains two mechanisms:
:
: 1. Simple model of ATPase pump with 3 kinetic constants (Destexhe 1992)
:
:       Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
:
:   A Michaelis-Menten approximation is assumed, which reduces the complexity
:   of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
:   The values of these parameters are chosen assuming a high affinity of 
:   the pump to calcium and a low transport capacity (cfr. Blaustein, 
:   TINS, 11: 438, 1988, and references therein).  
:
:   For further information about this this mechanism, see Destexhe, A. 
:   Babloyantz, A. and Sejnowski, TJ.  Ionic mechanisms for intrinsic slow 
:   oscillations in thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993.
:
:
: 2. Simple first-order decay or buffering:
:
:       Cai + B <-> ...
:
:   which can be written as:
:
:       dCai/dt = (cainf - Cai) / taur
:
:   where cainf is the equilibrium intracellular calcium value (usually
:   in the range of 200-300 nM) and taur is the time constant of calcium 
:   removal.  The dynamics of submembranal calcium is usually thought to
:   be relatively fast, in the 1-10 millisecond range (see Blaustein, 
:   TINS, 11: 438, 1988).
:
: All variables are range variables
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cadyn
	USEION ca READ ica, cai WRITE cai
	RANGE depth,kt,kd,cainf,taur
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
}

CONSTANT {
	FARADAY = 96489		(coul)		: moles do not appear in units
}

PARAMETER {
	depth	= .1	(um)		: depth of shell
	taur	= 1e10	(ms)		: remove first-order decay
	cainf	= 2.4e-4 (mM)
	kt	= 1e-4	(mM/ms)
	kd	= 1e-4	(mM)
}

STATE {
	cai		(mM) 
}

INITIAL {
	cai = kd
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)
	drive_pump	(mM/ms)
}
	
BREAKPOINT {
	SOLVE state METHOD derivimplicit
}

DERIVATIVE state { 

	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)

	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	drive_pump = -kt * cai / (cai + kd )		: Michaelis-Menten

	cai' = drive_channel + drive_pump + (cainf-cai)/taur
}