MyFirstNEURON (Houweling, Sejnowski 1997)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3808
MyFirstNEURON is a NEURON demo by Arthur Houweling and Terry Sejnowski. Perform experiments from the book 'Electrophysiology of the Neuron, A Companion to Shepherd's Neurobiology, An Interactive Tutorial' by John Huguenard & David McCormick, Oxford University Press 1997, or design your own one or two cell simulation.
Reference:
1 . Huguenard J, McCormick DA, Shepherd GM (1997) Electrophysiology of the Neuron, A Companion to Shepherd's Neurobiology, An Interactive Tutorial. Electrophysiology of the Neuron
2 . Houweling AR, Sejnowski TJ (1997) Personal communication from Arthur Houweling.
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Activity Patterns; Bursting; Ion Channel Kinetics; Temporal Pattern Generation; Oscillations; Parameter Fitting; Detailed Neuronal Models; Tutorial/Teaching; Action Potentials; Sleep; Calcium dynamics;
Implementer(s): Houweling, Arthur [Arthur at Salk.edu];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium;
/
MyFirstNEURON
MyFirstNEURONmanual_files
readme.txt
ampa.mod
ampa2.mod
cadyn.mod
gabaA.mod
gabaA2.mod
gabaB.mod
gabaB2.mod
HH1.mod
HH2.mod
ia.mod *
iahp.mod
iahp2.mod *
ic.mod *
ican.mod
ih.mod *
il.mod *
im.mod *
it.mod *
it2.mod
leak.mod *
nmda.mod
nmda2.mod
synstim.mod
about.hoc
e1.par
e10.par
e11a.par
e11b.par
e12.par
e13.par
e14.par
e15a.par
e15b.par
e16a.par
e16b.par
e16c.par
e17a.par
e17b.par
e3.par
e5.par
e7.par
manual.htm
mcontrl1.hoc
mcontrl2.hoc
mcontrl3.hoc
methods.htm
mosinit.hoc
my1stnrn.hoc
parpanl1.hoc
parpanl2.hoc
parpanl3.hoc
plotcurr.hoc
                            
TITLE Slow Ca-dependent potassium current
:
:   Ca++ dependent K+ current IC responsible for slow AHP
:   Differential equations
:
:   Model based on a first order kinetic scheme
:
:      <closed> + n cai <-> <open>	(alpha,beta)
:
:   Following this model, the activation fct will be half-activated at 
:   a concentration of Cai = (beta/alpha)^(1/n) = cac (parameter)
:
:   The mod file is here written for the case n=2 (2 binding sites)
:   ---------------------------------------------
:
:   This current models the "slow" IK[Ca] (IAHP): 
:      - potassium current
:      - activated by intracellular calcium
:      - NOT voltage dependent
:
:   A minimal value for the time constant has been added
:
:   Ref: Destexhe et al., J. Neurophysiology 72: 803-818, 1994.
:
:   Modifications by Arthur Houweling for use in MyFirstNEURON


INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX iAHP2
	USEION k READ ek WRITE ik
	USEION ca READ cai
        RANGE gkbar, m_inf, tau_m
	GLOBAL beta, cac
	RANGE ik
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}


PARAMETER {
	v		(mV)
	celsius		(degC)
        dt              (ms)
	ek		(mV)
	cai		(mM)	
	gkbar	= .01	(mho/cm2)
	beta	= 0.03	(1/ms)		: backward rate constant
	cac	= 0.025	(mM)		: middle point of activation fct
	taumin	= 0.1	(ms)		: minimal value of the time cst
}


STATE {
	m
}

ASSIGNED {
	ik	(mA/cm2)
	m_inf
	tau_m	(ms)
	tadj
}

BREAKPOINT { 
	SOLVE states :METHOD euler
	ik = gkbar * m*m * (v - ek)
}

:DERIVATIVE states {
:       evaluate_fct(v,cai)
:
:       m'= (m_inf-m) / tau_m 
:}
  
PROCEDURE states() {
        evaluate_fct(v,cai)

        m= m + (1-exp(-dt/tau_m))*(m_inf-m)
}

UNITSOFF
INITIAL {
:
:  activation kinetics are assumed to be at 22 deg. C
:  Q10 is assumed to be 3
:
	tadj = 3 ^ ((celsius-22.0)/10)

	evaluate_fct(v,cai)
	m = m_inf
}

PROCEDURE evaluate_fct(v(mV),cai(mM)) {  LOCAL car

	car = (cai/cac)^2

	m_inf = car / ( 1 + car )
	tau_m = 1 / beta / (1 + car) / tadj

        if(tau_m < taumin) { tau_m = taumin } 	: min value of time cst
}
UNITSON