Dendritica (Vetter et al 2001)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:7907
Dendritica is a collection of programs for relating dendritic geometry and signal propagation. The programs are based on those used for the simulations described in: Vetter, P., Roth, A. & Hausser, M. (2001) For reprint requests and additional information please contact Dr. M. Hausser, email address: m.hausser@ucl.ac.uk
Reference:
1 . Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926-37 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Cerebellum Purkinje GABA cell;
Channel(s): I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Bursting; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Axonal Action Potentials; Action Potentials;
Implementer(s): Hausser, M [M.Hausser at ucl.ac.uk];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Cerebellum Purkinje GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Files displayed below are from the implementation
/
dendritica-1.1
batch_back
back
mod
kvz_naz
SGI
ca.mod *
cad.mod *
childa.mod *
iqq.mod *
kadist.mod
kaprox.mod
kca.mod *
km.mod *
kvz_nature.mod *
naz_nature.mod *
peak.mod
syn2.mod *
mod_func.c
special_kvznaz *
                            
COMMENT

km.mod

Potassium channel, Hodgkin-Huxley style kinetics
Based on I-M (muscarinic K channel)
Slow, noninactivating

Author: Zach Mainen, Salk Institute, 1995, zach@salk.edu
	
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX km
	USEION k READ ek WRITE ik
	RANGE n, gk, gbar
	RANGE ninf, ntau
	GLOBAL Ra, Rb
	GLOBAL q10, temp, tadj, vmin, vmax
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

PARAMETER {
	gbar = 10   	(pS/um2)	: 0.03 mho/cm2
	v 		(mV)
								
	tha  = -30	(mV)		: v 1/2 for inf
	qa   = 9	(mV)		: inf slope		
	
	Ra   = 0.001	(/ms)		: max act rate  (slow)
	Rb   = 0.001	(/ms)		: max deact rate  (slow)

	dt		(ms)
	celsius		(degC)
	temp = 23	(degC)		: original temp 	
	q10  = 2.3			: temperature sensitivity

	vmin = -120	(mV)
	vmax = 100	(mV)
} 


ASSIGNED {
	a		(/ms)
	b		(/ms)
	ik 		(mA/cm2)
	gk		(pS/um2)
	ek		(mV)
	ninf
	ntau (ms)	
	tadj
}
 

STATE { n }

INITIAL { 
	trates(v)
	n = ninf
}

BREAKPOINT {
        SOLVE states
	gk = tadj*gbar*n
	ik = (1e-4) * gk * (v - ek)
} 

LOCAL nexp

PROCEDURE states() {   :Computes state variable n 
        trates(v)      :             at the current v and dt.
        n = n + nexp*(ninf-n)
        VERBATIM
        return 0;
        ENDVERBATIM
}

PROCEDURE trates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        LOCAL tinc
        TABLE ninf, nexp
	DEPEND dt, celsius, temp, Ra, Rb, tha, qa
	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable_hh == 1

        tadj = q10^((celsius - temp)/10)

        tinc = -dt * tadj
        nexp = 1 - myexp(tinc/ntau)
}





FUNCTION myexp(x) {
	if (x < -100) {
	myexp = 0
	}else{
	myexp = exp(x)
	}
}


PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.

        a = Ra * (v - tha) / (1 - myexp(-(v - tha)/qa))
        b = -Rb * (v - tha) / (1 - myexp((v - tha)/qa))
        ntau = 1/(a+b)
	ninf = a*ntau
}