Dendritica (Vetter et al 2001)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:7907
Dendritica is a collection of programs for relating dendritic geometry and signal propagation. The programs are based on those used for the simulations described in: Vetter, P., Roth, A. & Hausser, M. (2001) For reprint requests and additional information please contact Dr. M. Hausser, email address: m.hausser@ucl.ac.uk
Reference:
1 . Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926-37 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Cerebellum Purkinje GABA cell;
Channel(s): I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Bursting; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Axonal Action Potentials; Action Potentials;
Implementer(s): Hausser, M [M.Hausser at ucl.ac.uk];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Cerebellum Purkinje GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Files displayed below are from the implementation
TITLE Q current

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
        (mM) = (milli/liter)

}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
        dt (ms)
	v (mV)
	erevq=-35   (mV)
	celsius = 30	(degC)
	gqbar=.003 (mho/cm2)
        vhalf=-88   (mV)
        a0=0.00057      (/ms)
        b0=0.00057     (/ms)
	zeta=3   (1)
        gq=0.4   (1)
	qten=5	(1)
}


NEURON {
	SUFFIX qq
	NONSPECIFIC_CURRENT Iqq
        RANGE Iqq,gqbar
        GLOBAL inf,tau
}

STATE {
        qq
}

ASSIGNED {
	Iqq (mA/cm2)
        inf
        tau
}

INITIAL {
	rate(v)
	qq=inf
}

BREAKPOINT {
	SOLVE state
	Iqq = gqbar*qq*(v-erevq)

}

FUNCTION alp(v(mV)) {
  alp = exp( 1.e-3*zeta*(v-vhalf)*9.648e4/(8.315*(273.16+celsius)))
}

FUNCTION bet(v(mV)) {
  bet = exp(1.e-3*zeta*gq*(v-vhalf)*9.648e4/(8.315*(273.16+celsius)))
}

LOCAL facq

:if state_borgka is called from hoc, garbage or segmentation violation will
:result because range variables won't have correct pointer.  This is because
: only BREAKPOINT sets up the correct pointers to range variables.
PROCEDURE state() {     : exact when v held constant; integrates over dt step
        rate(v)
        qq = qq + facq*(inf - qq)
        VERBATIM
        return 0;
        ENDVERBATIM
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,q10
        q10=qten^((celsius-23)/10)
        a = alp(v)
        inf = 1/(1 + a)
        tau = bet(v)/(q10*(a0+b0*a))
	if (tau<2) {tau=10}
        facq = (1 - exp(-dt/tau))^1.2
}