Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:97263
This model shows how backpropagating action potentials in the long lateral dendrites of mitral cells, together with granule cell actions on mitral cells within narrow columns forming glomerular units, can provide a mechanism to activate strong local inhibition between arbitrarily distant mitral cells. The simulations predict a new role for the dendrodendritic synapses in the multicolumnar organization of the granule cells.
Reference:
1 . Migliore M, Shepherd GM (2008) Dendritic action potentials connect distributed dendrodendritic microcircuits. J Comput Neurosci 24:207-21 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Activity Patterns; Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Action Potentials; Olfaction;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; I Na,t; I A; I K; Gaba; Glutamate;
/
MT-GC
readme.txt *
kamt.mod *
kdrmt.mod *
naxn.mod *
nmdanetOB.mod *
coeff-table.txt *
forfig3.hoc *
gc.hoc *
mitral.hoc *
mosinit.hoc *
                            
begintemplate Mitral

public soma, priden, secden, tuftden, hillock, initialseg
public dendritic, somatic, second, somden, synodor, isynpg
public dampa, igp


create soma, priden, secden[2], tuftden, hillock, initialseg

forall {Ra = 150}

objref dendritic, somatic, somden, synodor
objref isynpg, dampa, igp[2][3]

proc init() {

dendritic = new SectionList()
forsec "priden" dendritic.append()
forsec "secden" dendritic.append()
forsec "tuftden" dendritic.append()

somatic = new SectionList()
soma somatic.append
hillock somatic.append

somden = new SectionList()
forsec somatic somden.append()
forsec dendritic somden.append()

topol()
segments()
geometry()
memb()

}


proc topol() {local i
	connect secden[0](0), soma(.5)
	connect secden[1](0), soma(.5)
	connect priden(0), soma(1)
	connect tuftden(0), priden(1)

	connect hillock(0), soma(0)
	connect initialseg(0), hillock(1)
}

proc segments() {local i
	soma.nseg= 1
	priden.nseg = 5
	forsec "tuftden" nseg = 30
	forsec "secden" nseg = 50
	initialseg.nseg = 3
	hillock.nseg = 3
}

proc geometry() {local i
	soma { L = 25  diam = 20 }
	priden { L = 300  diam = 3 }
	forsec "tuftden" {rallbranch=20 L=300  diam(0:1)=.4:.4 }
	forsec "secden" { L=500  diam=2 }
	initialseg{ L=30  diam=1.5}
	hillock { L=5  diam(0:1) = soma.diam(0) : initialseg.diam(0) }
	define_shape()
}
	


proc memb() {
	forall {insert pas}
	forsec somden {
		insert nax  insert kamt insert kdrmt
		ek = -90
		ena = 50
		gbar_nax = 0.04 sh_nax=10
	 	gbar_kdrmt = 0.0001
		gbar_kamt = 0.004
		}

	forall {Ra = 150}

	totarea=0
	forall {
		for (x) {totarea=totarea+area(x)}
		cm = 1.8
		g_pas = 1/12000
		e_pas = -65
	}

	initialseg {
		insert nax  insert kamt insert kdrmt
		ek = -90
		ena = 50
	        g_pas = 1/1000
	        gbar_nax = 0.8
		sh_nax = 0
	        gbar_kamt = 0.08
	        gbar_kdrmt = 0.0001
	}       

  
	tuftden {
	synodor = new Exp2Syn(.2)
	synodor.e=0
	synodor.tau1 = 20
	synodor.tau2 = 200

}

for i=0, 1 secden[i] {
	for j=0, 2 {
		igp[i][j] = new Exp2Syn(j*.4)
		igp[i][j].e=-80
		igp[i][j].tau1 = 1
		igp[i][j].tau2 = 200
	}
}

}

endtemplate Mitral