CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:9769
NEURON mod files from N. Poolos, M. Migliore, and D. Johnston, Nature Neuroscience (2002). The experimental and modeling results in this paper demonstrate for the first time that neuronal excitability can be altered by pharmaceuticals acting selectively on dendrites, and suggest an important role for Ih in controlling dendritic excitability and epileptogenesis.
Reference:
1 . Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5:767-74 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Active Dendrites; Detailed Neuronal Models; Action Potentials;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; I Na,t; I A; I K; I h;
/
lamotrigine
readme.txt
h.mod
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod
naxn.mod
netstimm.mod
lamotrigine.hoc
mosinit.hoc
n160_mod.nrn *
                            
TITLE I-h channel from Magee 1998 for distal dendrites
: default values are for dendrites and low Na

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
        ehd  		(mV)        
	celsius 	(degC)
	ghdbar=.0001 	(mho/cm2)
        vhalfl=-90   	(mV)
        vhalft=-75   	(mV)
        a0t=0.011      	(/ms)
        zetal=4    	(1)
        zetat=2.2    	(1)
        gmt=.4   	(1)
	q10=4.5
	qtl=1
}


NEURON {
	SUFFIX hd
	NONSPECIFIC_CURRENT i
        RANGE ghdbar, vhalfl
        GLOBAL linf,taul
}

STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
        linf      
        taul
        ghd
}

INITIAL {
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = ghdbar*l
	i = ghd*(v-ehd)

}


FUNCTION alpl(v(mV)) {
  alpl = exp(0.0378*zetal*(v-vhalfl)) 
}

FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft)) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1+ alpl(v))
        taul = bett(v)/(qtl*qt*a0t*(1+a))
}