Neural Query System NQS Data-Mining From Within the NEURON Simulator (Lytton 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:97874
NQS is a databasing program with a query command modeled loosely on the SQL select command. Please see the manual NQS.pdf for details of use. An NQS database must be populated with data to be used. This package includes MFP (model fingerprint) which provides an example of NQS use with the model provided in the modeldb folder (see readme for usage).
Reference:
1 . Lytton WW (2006) Neural Query System: Data-mining from within the NEURON simulator. Neuroinformatics 4:163-76 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Lytton, William [bill.lytton at downstate.edu];
/
NQS_with_example
modeldb
readme.txt *
exp2i.mod *
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3s.mod *
naxn.mod *
netstims.mod *
nmdanet.mod *
vecst.mod *
forfig5A.hoc *
n160.nrn *
orig_mosinit.hoc *
                            
/* apical[117] diam changed from 1 to 0.4 */
/* added axon */
/* lambda checked */
{NumSoma=13 NumApical=127 NumBasal=60 NumAxon=2}
create soma[NumSoma], apical[NumApical], basal[NumBasal], axon[NumAxon]

axon[0]  {nseg=5 diam=1 L=50}
axon[1]  {nseg=10 diam=0.7 L=250}
soma[0]  {nseg=1 diam= 3.4  L= .5  }
soma[1]  {nseg=1 diam= 3.4  L= .1  }
soma[2]  {nseg=1 diam= 5.8  L= .5852348  }
soma[3]  {nseg=1 diam= 7.4  L= 2.362393  }
soma[4]  {nseg=1 diam= 8.4  L= 1.030922  }
soma[5]  {nseg=1 diam= 9  L= 5.08973  }
soma[6]  {nseg=1 diam= 8.4  L= 2.161421  }
soma[7]  {nseg=1 diam= 7.4  L= 1.391761  }
soma[8]  {nseg=1 diam= 7  L= .7244999  }
soma[9]  {nseg=1 diam= 6.8  L= 1.021421  }
soma[10]  {nseg=1 diam= 5.8  L= .8354636  }
soma[11]  {nseg=1 diam= 4.8  L= .6500001  }
soma[12]  {nseg=1 diam= 4.2  L= 1.947434  }

apical[0]   {nseg=1 diam= 3.8  L= 2.715308  }
apical[1]   {nseg=1 diam= 3.6  L= 5.401713  }
apical[2]   {nseg=1 diam= 3  L= 3.876953  }
apical[3]   {nseg=1 diam= 3  L= 4.32302  }
apical[4]   {nseg=1 diam= 2.2  L= 9.503437  }
apical[5]   {nseg=2 diam= 2  L= 45.0123  }
apical[6]   {nseg=1 diam= 2  L= 31.20716  }
apical[7]   {nseg=1 diam= 2  L= 22.61171  }
apical[8]   {nseg=2 diam= 2  L= 37.90814  }
apical[9]   {nseg=1 diam= 2  L= 1.899714  }
apical[10]  {nseg=1 diam= 2  L= 2.305321  }
apical[11]  {nseg=1 diam= 2  L= 3.767573  }
apical[12]  {nseg=10 diam= 2  L= 33.49711  }
apical[13]  {nseg=25 diam= 2  L= 70.09814  }
apical[14]  {nseg=15 diam= 2  L= 40.81264  }
apical[15]  {nseg=30 diam= 2  L= 60.2801  }
apical[16]  {nseg=30 diam= 2  L= 60.47857  }
apical[17]  {nseg=30 diam= 1  L= 108.7753  }
apical[18]  {nseg=1 diam= .8  L= 10.96036  }
apical[19]  {nseg=2 diam= .8  L= 16.21915  }
apical[20]  {nseg=2 diam= .4  L= 26.14653  }
apical[21]  {nseg=6 diam= .4  L= 119.6609  }
apical[22]  {nseg=3 diam= .4  L= 39.18561  }
apical[23]  {nseg=3 diam= .4  L= 34.66425  }
apical[24]  {nseg=2 diam= .4  L= 31.36501  }
apical[25]  {nseg=2 diam= .4  L= 29.33217  }
apical[26]  {nseg=2 diam= 2  L= 31.1963  }
apical[27]  {nseg=4 diam= 1.4  L= 40.56636  }
apical[28]  {nseg=1 diam= 1.4  L= 4.73629  }
apical[29]  {nseg=5 diam= .8  L= 57.43425  }
apical[30]  {nseg=1 diam= .4  L= 21.68407  }
apical[31]  {nseg=1 diam= .4  L= 20.0452  }
apical[32]  {nseg=3 diam= .4  L= 64.84853  }
apical[33]  {nseg=3 diam= .4  L= 58.52066  }
apical[34]  {nseg=10 diam= .4  L= 230.365  }
apical[35]  {nseg=2 diam= .4  L= 37.58863  }
apical[36]  {nseg=4 diam= .4  L= 77.22144  }
apical[37]  {nseg=5 diam= .4  L= 112.0059  }
apical[38]  {nseg=2 diam= .4  L= 37.58242  }
apical[39]  {nseg=8 diam= .8  L= 89.90406  }
apical[40]  {nseg=1 diam= .8  L= 5.726318  }
apical[41]  {nseg=1 diam= .8  L= 1.514942  }
apical[42]  {nseg=2 diam= .8  L= 23.88437  }
apical[43]  {nseg=1 diam= .4  L= 3.340797  }
apical[44]  {nseg=1 diam= .4  L= 3.250262  }
apical[45]  {nseg=4 diam= .4  L= 86.1567  }
apical[46]  {nseg=3 diam= .4  L= 46.10009  }
apical[47]  {nseg=1 diam= .4  L= 23.62396  }
apical[48]  {nseg=4 diam= .4  L= 78.09839  }
apical[49]  {nseg=2 diam= .4  L= 41.05293  }
apical[50]  {nseg=3 diam= .4  L= 64.45201  }
apical[51]  {nseg=6 diam= .4  L= 135.1048  }
apical[52]  {nseg=4 diam= .4  L= 70.09399  }
apical[53]  {nseg=1 diam= .4  L= 11.29383  }
apical[54]  {nseg=3 diam= .4  L= 57.12379  }
apical[55]  {nseg=3 diam= .4  L= 51.23798  }
apical[56]  {nseg=1 diam= .4  L= .226719  }
apical[57]  {nseg=2 diam= .4  L= 42.9783  }
apical[58]  {nseg=6 diam= .4  L= 130.2097  }
apical[59]  {nseg=2 diam= .4  L= 26.79343  }
apical[60]  {nseg=5 diam= .4  L= 125.4406  }
apical[61]  {nseg=2 diam= .4  L= 32.70949  }
apical[62]  {nseg=2 diam= .4  L= 46.61235  }
apical[63]  {nseg=3 diam= .4  L= 55.72121  }
apical[64]  {nseg=5 diam= .4  L= 116.3788  }
apical[65]  {nseg=1 diam= .4  L= 13.57025  }
apical[66]  {nseg=6 diam= .4  L= 118.638  }
apical[67]  {nseg=1 diam= .4  L= 24.19888  }
apical[68]  {nseg=4 diam= .4  L= 96.23538  }
apical[69]  {nseg=3 diam= .4  L= 59.93812  }
apical[70]  {nseg=2 diam= .4  L= 64.90414  }
apical[71]  {nseg=1 diam= .4  L= .365519  }
apical[72]  {nseg=5 diam= .4  L= 118.724  }
apical[73]  {nseg=1 diam= .4  L= 5.153612  }
apical[74]  {nseg=7 diam= .4  L= 159.0847  }
apical[75]  {nseg=3 diam= .4  L= 65.16338  }
apical[76]  {nseg=3 diam= .8  L= 32.91693  }
apical[77]  {nseg=4 diam= .4  L= 84.05488  }
apical[78]  {nseg=3 diam= .8  L= 49.03632  }
apical[79]  {nseg=3 diam= .4  L= 65.3413  }
apical[80]  {nseg=7 diam= .4  L= 144.8597  }
apical[81]  {nseg=1 diam= .4  L= 2.782626  }
apical[82]  {nseg=1 diam= .4  L= 10.63182  }
apical[83]  {nseg=1 diam= .4  L= 14.79619  }
apical[84]  {nseg=1 diam= .4  L= 24.52155  }
apical[85]  {nseg=1 diam= .4  L= 19.95786  }
apical[86]  {nseg=1 diam= .4  L= 22.937  }
apical[87]   {nseg=1 diam= .4  L= 29.18237  }
apical[88]   {nseg=4 diam= .4  L= 93.45203  }
apical[89]   {nseg=3 diam= .4  L= 82.16525  }
apical[90]   {nseg=2 diam= 1  L= 28.88242  }
apical[91]   {nseg=1 diam= 1  L= 3.312038  }
apical[92]   {nseg=2 diam= 1  L= 31.43214  }
apical[93]   {nseg=4 diam= 1  L= 65.21848  }
apical[94]   {nseg=4 diam= 1  L= 65.93275  }
apical[95]   {nseg=1 diam= .4  L= 2.210091  }
apical[96]   {nseg=4 diam= .4  L= 80.05907  }
apical[97]   {nseg=1 diam= .4  L= 12.09364  }
apical[98]   {nseg=2 diam= .4  L= 40.26765  }
apical[99]   {nseg=2 diam= .4  L= 51.40726  }
apical[100]  {nseg=5 diam= .4  L= 113.2667  }
apical[101]  {nseg=6 diam= .4  L= 149.6538  }
apical[102]  {nseg=12 diam= .4  L= 271.828  }
apical[103]  {nseg=1 diam= .8  L= 19.2613  }
apical[104]  {nseg=5 diam= .4  L= 94.12336  }
apical[105]  {nseg=8 diam= .4  L= 170.9137  }
apical[106]  {nseg=1 diam= .8  L= 5.102267  }
apical[107]  {nseg=1 diam= .8  L= 10.26147  }
apical[108]  {nseg=6 diam= .4  L= 117.1293  }
apical[109]  {nseg=2 diam= .8  L= 30.43381  }
apical[110]  {nseg=4 diam= .4  L= 80.42423  }
apical[111]  {nseg=10 diam= .4  L= 202.9251  }
apical[112]  {nseg=7 diam= .4  L= 155.1176  }
apical[113]  {nseg=1 diam= 1.4  L= 11.20985  }
apical[114]  {nseg=1 diam= 1.4  L= 8.052182  }
apical[115]  {nseg=1 diam= .4  L= 17.14739  }
apical[116]  {nseg=1 diam= .4  L= 17.07239  }
apical[117]  {nseg=1 diam= .4  L= 3.802383  }
apical[118]  {nseg=4 diam= .4  L= 79.13516  }
apical[119]  {nseg=7 diam= .4  L= 132.4294  }
apical[120]  {nseg=1 diam= .8  L= 7.493482  }
apical[121]  {nseg=1 diam= .8  L= 16.02206  }
apical[122]  {nseg=1 diam= .4  L= 2.194287  }
apical[123]  {nseg=1 diam= .4  L= 14.77226  }
apical[124]  {nseg=4 diam= .4  L= 85.29885  }
apical[125]  {nseg=5 diam= .4  L= 108.0732  }
apical[126]  {nseg=4 diam= .4  L= 89.57475  }
basal[0]  {nseg=1 diam= .8  L= 2.888482  }
basal[1]  {nseg=1 diam= .8  L= 12.67608  }
basal[2]  {nseg=1 diam= .4  L= 6.226819  }
basal[3]  {nseg=2 diam= .4  L= 28.07395  }
basal[4]  {nseg=1 diam= .4  L= 19.26636  }
basal[5]  {nseg=1 diam= .4  L= 13.94479  }
basal[6]  {nseg=5 diam= .4  L= 110.2079  }
basal[7]  {nseg=4 diam= .4  L= 75.98547  }
basal[8]  {nseg=8 diam= .4  L= 153.798  }
basal[9]  {nseg=4 diam= .4  L= 91.32814  }
basal[10]  {nseg=3 diam= .4  L= 72.40762  }
basal[11]  {nseg=3 diam= .4  L= 68.55269  }
basal[12]  {nseg=1 diam= .8  L= 16.80424  }
basal[13]  {nseg=1 diam= .8  L= 14.56381  }
basal[14]  {nseg=1 diam= .4  L= .4899998  }
basal[15]  {nseg=1 diam= .4  L= 5.744193  }
basal[16]  {nseg=4 diam= .4  L= 116.2063  }
basal[17]  {nseg=3 diam= .4  L= 60.7986  }
basal[18]  {nseg=7 diam= .4  L= 140.8884  }
basal[19]  {nseg=4 diam= .4  L= 82.97742  }
basal[20] {nseg=2 diam= .4  L= 36.26253  }
basal[21] {nseg=5 diam= .4  L= 100.4919  }
basal[22] {nseg=3 diam= .4  L= 72.16766  }
basal[23] {nseg=1 diam= 1  L= 12.02422  }
basal[24] {nseg=1 diam= .8  L= 4.843154  }
basal[25] {nseg=1 diam= .8  L= 3.307597  }
basal[26] {nseg=1 diam= .4  L= 11.31487  }
basal[27] {nseg=1 diam= .4  L= 25.26186  }
basal[28] {nseg=1 diam= .4  L= 26.09189  }
basal[29] {nseg=3 diam= .4  L= 73.88529  }
basal[30] {nseg=3 diam= .4  L= 69.03699  }
basal[31] {nseg=4 diam= .4  L= 81.94038  }
basal[32] {nseg=7 diam= .4  L= 157.9888  }
basal[33]  {nseg=1 diam= .4  L= 12.65634  }
basal[34]  {nseg=2 diam= .4  L= 47.59445  }
basal[35]  {nseg=4 diam= .4  L= 87.35556  }
basal[36]  {nseg=5 diam= .4  L= 92.50491  }
basal[37]  {nseg=1 diam= .4  L= 21.87688  }
basal[38]  {nseg=4 diam= .4  L= 86.62627  }
basal[39]  {nseg=3 diam= .4  L= 74.35841  }
basal[40]  {nseg=4 diam= .4  L= 92.61662  }
basal[41] {nseg=1 diam= 1  L= 9.526773  }
basal[42] {nseg=1 diam= 1  L= 3.523762  }
basal[43] {nseg=1 diam= .8  L= 11.17033  }
basal[44] {nseg=1 diam= .4  L= 5.654395  }
basal[45] {nseg=1 diam= .4  L= 10.01039  }
basal[46] {nseg=1 diam= .4  L= 21.26989  }
basal[47] {nseg=2 diam= .4  L= 38.8982  }
basal[48] {nseg=6 diam= .4  L= 125.4449  }
basal[49] {nseg=7 diam= .4  L= 137.2615  }
basal[50] {nseg=3 diam= .4  L= 66.48241  }
basal[51]  {nseg=1 diam= 1  L= .5340415  }
basal[52]  {nseg=1 diam= 1  L= 7.411953  }
basal[53]  {nseg=4 diam= .4  L= 80.27492  }
basal[54]  {nseg=1 diam= .8  L= 11.25394  }
basal[55]  {nseg=1 diam= .4  L= 7.328401  }
basal[56]  {nseg=5 diam= .4  L= 100.9536  }
basal[57]  {nseg=2 diam= .4  L= 32.70675  }
basal[58]  {nseg=8 diam= .4  L= 165.4767  }
basal[59]  {nseg=8 diam= .4  L= 161.9148  }

soma[0]  {connect soma[1]  (0), 1
         connect basal[0] (0),0
	 connect basal[20] (0),0
	 connect basal[23] (0),0
	 connect basal[41] (0),0}

soma[1]  connect soma[2]  (0), 1
soma[2]  {connect soma[3]  (0), 1
         connect axon[0](0),0.5}
axon[0]  connect axon[1](0),1
soma[3]  connect soma[4]  (0), 1
soma[4]  connect soma[5]  (0), 1
soma[5]  connect soma[6]  (0), 1
soma[6]  connect soma[7]  (0), 1
soma[7]  connect soma[8]  (0), 1
soma[8]  connect soma[9]  (0), 1
soma[9]  connect soma[10]  (0), 1
soma[10]  connect soma[11]  (0), 1
soma[11]  connect soma[12]  (0), 1

soma[12]  connect apical[0]  (0), 1

apical[0]   connect apical[ 1]  (0), 1
apical[1]   connect apical[ 2]  (0), 1
apical[2]  {connect apical[ 3]  (0), 1
connect apical[121]  (0), 1}
apical[3]   connect apical[ 4]  (0), 1
apical[4]   connect apical[ 5]  (0), 1
apical[5]  {connect apical[ 6]  (0), 1
connect apical[113]  (0), 1}
apical[6]  {connect apical[ 7]  (0), 1
connect apical[112]  (0), 1}
apical[7]  {connect apical[ 8]  (0), 1
connect apical[106]  (0), 1}
apical[8]  {connect apical[ 9]  (0), 1
connect apical[105]  (0), 1}
apical[9]  {connect apical[ 10] (0), 1
connect apical[103]  (0), 1}
apical[10] {connect apical[ 11] (0), 1
connect apical[102]  (0), 1}
apical[11] {connect apical[ 12] (0), 1
connect apical[101]  (0), 1}
apical[12] {connect apical[ 13] (0), 1
connect apical[90]   (0), 1}
apical[13] {connect apical[ 14] (0), 1
connect apical[78]  (0), 1}
apical[14] {connect apical[ 15] (0), 1
connect apical[76]  (0), 1}
apical[15] {connect apical[ 16] (0), 1
connect apical[64]  (0), 1}
apical[16] {connect apical[ 17] (0), 1
connect apical[26]  (0), 1}
apical[17]  connect apical[ 18] (0), 1
apical[18] {connect apical[ 19] (0), 1
connect apical[21]  (0), 1}
apical[19]  connect apical[ 20] (0), 1
apical[21] {connect apical[ 22] (0), 1
connect apical[23]  (0), 1}
apical[23] {connect apical[ 24] (0), 1
connect apical[25]  (0), 1}
apical[26]  connect apical[ 27] (0), 1
apical[27] {connect apical[ 28] (0), 1
connect apical[39]  (0), 1}
apical[28]  connect apical[ 29] (0), 1
apical[29]  connect apical[ 30] (0), 1
apical[30] {connect apical[ 31] (0), 1
connect apical[38]  (0), 1}
apical[31] {connect apical[ 32] (0), 1
connect apical[35]  (0), 1}
apical[32] {connect apical[ 33] (0), 1
connect apical[34]  (0), 1}
apical[35] {connect apical[ 36] (0), 1
connect apical[37]  (0), 1}
apical[39] {connect apical[ 40] (0), 1
connect apical[59]  (0), 1}
apical[40] {connect apical[ 41] (0), 1
connect apical[50]  (0), 1}
apical[41] {connect apical[ 42] (0), 1
connect apical[49]  (0), 1}
apical[42]  connect apical[ 43] (0), 1
apical[43] {connect apical[ 44] (0), 1
connect apical[48]  (0), 1}
apical[44] {connect apical[ 45] (0), 1
connect apical[47]  (0), 1}
apical[45]  connect apical[ 46] (0), 1
apical[50] {connect apical[ 51] (0), 1
connect apical[52]  (0), 1}
apical[52] {connect apical[ 53] (0), 1
connect apical[56]  (0), 1}
apical[53] {connect apical[ 54] (0), 1
connect apical[55]  (0), 1}
apical[56] {connect apical[ 57] (0), 1
connect apical[58]  (0), 1}
apical[59] {connect apical[ 60] (0), 1
connect apical[61]  (0), 1}
apical[61] {connect apical[ 62] (0), 1
connect apical[63]  (0), 1}
apical[64] {connect apical[ 65] (0), 1
connect apical[72]  (0), 1}
apical[65] {connect apical[ 66] (0), 1
connect apical[71]  (0), 1}
apical[66] {connect apical[ 67] (0), 1
connect apical[70]  (0), 1}
apical[67] {connect apical[ 68] (0), 1
connect apical[69]  (0), 1}
apical[72]  connect apical[ 73] (0), 1
apical[73] {connect apical[ 74] (0), 1
connect apical[75]  (0), 1}
apical[76]  connect apical[ 77] (0), 1
apical[78] {connect apical[ 79] (0), 1
connect apical[80]  (0), 1}
apical[80] {connect apical[ 81] (0), 1
connect apical[89]   (0), 1}
apical[81] {connect apical[ 82] (0), 1
connect apical[88]   (0), 1}
apical[82] {connect apical[ 83] (0), 1
connect apical[87]   (0), 1}
apical[83] {connect apical[ 84] (0), 1
connect apical[85]  (0), 1}
apical[85]  connect apical[ 86] (0), 1
apical[90]  {connect apical[ 91]  (0), 1
connect apical[100]  (0), 1}
apical[91]  {connect apical[ 92]  (0), 1
connect apical[97]   (0), 1}
apical[92]  {connect apical[ 93]  (0), 1
connect apical[96]   (0), 1}
apical[93]  {connect apical[ 94]  (0), 1
connect apical[95]   (0), 1}
apical[97]  {connect apical[ 98]  (0), 1
connect apical[99]   (0), 1}
apical[103]  connect apical[ 104] (0), 1
apical[106] {connect apical[ 107] (0), 1
connect apical[109]  (0), 1}
apical[107]  connect apical[ 108] (0), 1
apical[109] {connect apical[ 110] (0), 1
connect apical[111]  (0), 1}
apical[113] {connect apical[ 114] (0), 1
connect apical[120]  (0), 1}
apical[114]  connect apical[ 115] (0), 1
apical[115] {connect apical[ 116] (0), 1
connect apical[119]  (0), 1}
apical[116]  connect apical[ 117] (0), 1
apical[117]  connect apical[ 118] (0), 1
apical[121]  connect apical[ 122] (0), 1
apical[122] {connect apical[ 123] (0), 1
connect apical[126]  (0), 1}
apical[123] {connect apical[ 124] (0), 1
connect apical[125]  (0), 1}
basal[0] {connect basal[1]  (0), 1
connect basal[12]  (0), 1}
basal[1] {connect basal[2]  (0), 1
connect basal[9]  (0), 1}
basal[2] {connect basal[3]  (0), 1
connect basal[8]  (0), 1}
basal[3] {connect basal[4]  (0), 1
connect basal[5]  (0), 1}
basal[5] {connect basal[6]  (0), 1
connect basal[7]  (0), 1}
basal[9] {connect basal[10]  (0), 1
connect basal[11]  (0), 1}
basal[12] {connect basal[13]  (0), 1
connect basal[19]  (0), 1}
basal[13]  connect basal[14]  (0), 1
basal[14] {connect basal[15]  (0), 1
connect basal[18]  (0), 1}
basal[15] {connect basal[16]  (0), 1
connect basal[17]  (0), 1}
basal[20] {connect basal[ 21] (0), 1
connect basal[22] (0), 1}
basal[23] {connect basal[ 24] (0), 1
connect basal[38]  (0), 1}
basal[24] {connect basal[ 25] (0), 1
connect basal[33]  (0), 1}
basal[25] connect basal[ 26] (0), 1
basal[26] {connect basal[ 27] (0), 1
connect basal[32] (0), 1}
basal[27] {connect basal[ 28] (0), 1
connect basal[31] (0), 1}
basal[28] {connect basal[ 29] (0), 1
connect basal[30] (0), 1}
basal[33] {connect basal[ 34] (0), 1
connect basal[37]  (0), 1}
basal[34] {connect basal[ 35] (0), 1
connect basal[36]  (0), 1}
basal[38] {connect basal[ 39] (0), 1
connect basal[40]  (0), 1}
basal[41] {connect basal[ 42] (0), 1
connect basal[59]  (0), 1}
basal[42] {connect basal[ 43] (0), 1
connect basal[51]  (0), 1}
basal[43] connect basal[ 44] (0), 1
basal[44] {connect basal[ 45] (0), 1
connect basal[50] (0), 1}
basal[45] {connect basal[ 46] (0), 1
connect basal[49] (0), 1}
basal[46] {connect basal[ 47] (0), 1
connect basal[48] (0), 1}
basal[51] {connect basal[ 52] (0), 1
connect basal[54]  (0), 1}
basal[52]  connect basal[ 53] (0), 1
basal[54] {connect basal[ 55] (0), 1
connect basal[58]  (0), 1}
basal[55] {connect basal[ 56] (0), 1
connect basal[57]  (0), 1}