Cell splitting in neural networks extends strong scaling (Hines et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:97917
Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.
Reference:
1 . Hines ML, Eichner H, Schürmann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J Comput Neurosci 25:203-10 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Generic;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
/
splitcell
pardentategyrus
readme.html *
bgka.mod *
CaBK.mod *
ccanl.mod *
Gfluct2.mod *
gskch.mod *
hyperde3.mod *
ichan2.mod *
LcaMig.mod *
nca.mod *
tca.mod *
bg.sh
DG500_M7.hoc *
dgnetactivity.jpg *
dgnettraces.jpg *
init.hoc
initorig.hoc *
modstat *
mosinit_orig.hoc *
out.std
parRI10sp.hoc
RI10sp.hoc
test1.sh *
time *
                            
TITLE gskch.mod  calcium-activated potassium channel (non-voltage-dependent)

COMMENT

gsk granule

ENDCOMMENT

UNITS {
        (molar) = (1/liter)
        (mM)    = (millimolar)
	(mA)	= (milliamp)
	(mV)	= (millivolt)
}

NEURON {
	SUFFIX gskch
	USEION sk READ esk WRITE isk VALENCE 1
	USEION nca READ ncai VALENCE 2
	USEION lca READ lcai VALENCE 2
	USEION tca READ tcai VALENCE 2
	RANGE gsk, gskbar, qinf, qtau, isk
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	celsius=6.3 (degC)
	v		(mV)
	dt		(ms)
	gskbar  (mho/cm2)
	esk	(mV)
	cai (mM)
	ncai (mM)
	lcai (mM)
	tcai (mM)
}

STATE { q }

ASSIGNED {
	isk (mA/cm2) gsk (mho/cm2) qinf qtau (ms) qexp
}


BREAKPOINT {          :Computes i=g*q^2*(v-esk)
	SOLVE state
        gsk = gskbar * q*q
	isk = gsk * (v-esk)
}

UNITSOFF

INITIAL {
	cai = ncai + lcai + tcai	
	q=qinf
	rate(cai)
	VERBATIM
	ncai = _ion_ncai;
	lcai = _ion_lcai;
	tcai = _ion_tcai;
	ENDVERBATIM
}


PROCEDURE state() {  :Computes state variable q at current v and dt.
	cai = ncai + lcai + tcai
	rate(cai)
	q = q + (qinf-q) * qexp
	VERBATIM
	return 0;
	ENDVERBATIM
}

LOCAL q10
PROCEDURE rate(cai) {  :Computes rate and other constants at current v.
	LOCAL alpha, beta, tinc
	q10 = 3^((celsius - 6.3)/10)
		:"q" activation system
alpha = 1.25e1 * cai * cai
beta = 0.00025 

:	alpha = 0.00246/exp((12*log10(cai)+28.48)/-4.5)
:	beta = 0.006/exp((12*log10(cai)+60.4)/35)
: alpha = 0.00246/fctrap(cai)
: beta = 0.006/fctrap(cai)
	qtau = 1 / (alpha + beta)
	qinf = alpha * qtau
	tinc = -dt*q10
	qexp = 1 - exp(tinc/qtau)*q10
}

UNITSON