Citations for Stability of complex spike timing-dependent plasticity in cerebellar learning (Roberts 2007)

Legends: Link to a Model Reference cited by multiple papers


Roberts PD (2007) Stability of complex spike timing-dependent plasticity in cerebellar learning. J Comput Neurosci 22:283-96 [PubMed]

References and models cited by this paper

References and models that cite this paper

Abbott LF, Blum KI (1996) Functional significance of long-term potentiation for sequence learning and prediction. Cereb Cortex 6:406-16 [PubMed]
Abbott LF, Kepler TB (1990) Model neurons: from Hodgkin Huxley to Hopfield. Statistical Mechanics of Neural Networks Lecture Notes in Physics, Garrido L, ed. pp.5
Albus JS (1971) A theory of cerebellar function Math Biosci 10:25-61
Barbour B (1993) Synaptic currents evoked in Purkinje cells by stimulating individual granule cells. Neuron 11:759-69 [PubMed]
Barmack NH, Shojaku H (1995) Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol 74:2573-89 [Journal] [PubMed]
Bell C, Bodznick D, Montgomery J, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50 Suppl 1:17-31 [Journal] [PubMed]
Bell CC, Han V, Sugawara Y, Grant K (1997) Direction of change in synaptic efficacy following pairing depends on the temporal relation of presynaptic input and postsynaptic spike during pairing. Soc Neurosci Abstr 23:1840
Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278-81 [Journal] [PubMed]
Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43:745-57 [Journal] [PubMed]
Buonomano DV, Mauk MD (1994) Neural network model of the cerebellum: temporal discrimination and the timing of motor responses Neural Comput 6:38-55
Callaway JC, Lasser-Ross N, Ross WN (1995) IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons. J Neurosci 15:2777-87 [PubMed]
Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856-60 [Journal] [PubMed]
Chen C, Thompson RF (1995) Temporal specificity of long-term depression in parallel fiber--Purkinje synapses in rat cerebellar slice. Learn Mem 2:185-98 [PubMed]
Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691-700 [Journal] [PubMed]
Crepel F, Jaillard D (1991) Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. J Physiol 432:123-41 [PubMed]
De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71:401-19 [Journal] [PubMed]
   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]
de_Vries B, Principe J (1992) The gamma model:A new neural network for temporal processing Neural Netw 5:565-576
Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950-61 [Journal] [PubMed]
   Spike timing detection in different forms of LTD (Doi et al 2005) [Model]
Ekerot CF, Jorntell H (2003) Parallel fiber receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2:101-9
Ekerot CF, Kano M (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res 342:357-60 [PubMed]
Fiala JC, Grossberg S, Bullock D (1996) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J Neurosci 16:3760-74 [PubMed]
Gerstner W (1999) Spiking neurons Pulsed Neural Networks, Mass W:Bishop CM, ed. pp.3
Gerstner W, Hemmen VANJL (1992) Associative memory in a network of spiking neurons Network 3:139-164
Gerstner W, Ritz R, van Hemmen JL (1993) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol Cybern 69:503-15 [PubMed]
Haas JS, Selverston AI, Abarbanel HDI (2004) Spike-timing-dependent plasticity of inhibition in the entorhinal cortex Soc Neurosci Abstr 57:13
Han VZ, Bell CC, Grant K, Sugawara Y (1999) Mormyrid electrosensory lobe in vitro: morphology of cells and circuits. J Comp Neurol 404:359-74 [PubMed]
Han VZ, Grant K, Bell CC (2000) Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27:611-22 [PubMed]
Hansel C, Linden DJ, D'Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467-75 [Journal] [PubMed]
Hirano T (1991) Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse 7:321-3 [Journal] [PubMed]
Houk JC, Alford S (1996) Computational significance of the cerebellar mechanism for synaptic plasticity in Purkinje cells Beh Brain Sci 19:457-461
Isope P, Barbour B (2002) Properties of unitary granule cell-->Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22:9668-78 [PubMed]
Isope P, Dieudonné S, Barbour B (2002) Temporal organization of activity in the cerebellar cortex: a manifesto for synchrony. Ann N Y Acad Sci 978:164-74 [PubMed]
Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85-102 [Journal] [PubMed]
Ito M (1990) Long-term depression in the cerebellum Seminars Neurosci 2:381-390
Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113-34 [PubMed]
Jack JJB, Noble D, Tsien RW (1975) Electric Current Flow in Excitable Cells
Jörntell H, Ekerot CF (2002) Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34:797-806 [PubMed]
Kano M, Rexhausen U, Dreessen J, Konnerth A (1992) Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356:601-4 [Journal] [PubMed]
Karachot L, Kado RT, Ito M (1994) Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neurosci Res 21:161-8 [PubMed]
Lev-Ram V, Makings LR, Keitz PF, Kao JP, Tsien RY (1995) Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients. Neuron 15:407-15 [PubMed]
Lev-Ram V, Wong ST, Storm DR, Tsien RY (2002) A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci U S A 99:8389-93 [Journal] [PubMed]
Levine MW (1991) The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells. Biol Cybern 65:459-67 [PubMed]
Linden DJ, Connor JA (1993) Cellular mechanisms of long-term depression in the cerebellum. Curr Opin Neurobiol 3:401-6 [PubMed]
Linden DJ, Dickinson MH, Smeyne M, Connor JA (1991) A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7:81-9 [PubMed]
Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197-213 [PubMed]
Llinás RR (1975) The cortex of the cerebellum. Sci Am 232:56-71 [PubMed]
Maex R, De Schutter E (1998) Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521-37 [Journal] [PubMed]
   Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998) [Model]
   Cerebellar granular layer (Maex and De Schutter 1998) [Model]
Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437-70 [PubMed]
Mauk MD (1997) Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 18:343-6 [PubMed]
Medina JF, Mauk MD (2000) Computer simulation of cerebellar information processing. Nat Neurosci 3 Suppl:1205-11 [Journal] [PubMed]
Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, Inouye M, Takagishi Y, Augustine GJ, Kano M (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233-44 [PubMed]
Mohr C, Roberts PD, Bell CC (2003) The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli. J Neurophysiol 90:1193-210
Nagano T, Ohmi O (1978) Plausible function of Golgi cells in the cerebellar cortex. Biol Cybern 29:75-82 [PubMed]
Neale SA, Garthwaite J, Batchelor AM (2001) mGlu1 receptors mediate a post-tetanic depression at parallel fibre-Purkinje cell synapses in rat cerebellum. Eur J Neurosci 14:1313-9 [PubMed]
Pellionisz A, Szentágothai J (1973) Dynamic single unit simulation of a realistic cerebellar network model. Brain Res 49:83-99 [PubMed]
Roberts PD (1997) Stochastic recruitment in parallel fiber activity patterns Beh Brain Sci 20:263-264
Roberts PD (2000) Electrosensory response mechanisms in mormyrid electric fish Neurocomputing 32:243-248
Roberts PD (2000) Dynamics of temporal learning rules. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:4077-82 [PubMed]
Roberts PD (2000) Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish. J Neurophysiol 84:2035-47 [Journal] [PubMed]
Roberts PD (2004) Recurrent biological neural networks: the weak and noisy limit. Phys Rev E Stat Nonlin Soft Matter Phys 69:031910 [Journal] [PubMed]
Roberts PD (2005) Recurrent neural network generates a basis for sensory image cancellation Neurocomputing 65:237-242
Roberts PD, Bell CC (2000) Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. J Comput Neurosci 9:67-83 [PubMed]
Roberts PD, Bell CC (2002) Spike timing dependent synaptic plasticity in biological systems. Biol Cybern 87:392-403 [Journal] [PubMed]
Ruigrok TJ, Voogd J (1995) Cerebellar influence on olivary excitability in the cat. Eur J Neurosci 7:679-93 [PubMed]
Rumsey CC, Abbott LF (2004) Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. J Neurophysiol 91:2273-80 [Journal] [PubMed]
Sakurai M (1989) Depression and potentiation of parallel fiber-Purkinje cell transmission in in vitro cerebellar slices The Olivocerebellar System in Motor Control, Strata P, ed. pp.221
Schreurs BG, Alkon DL (1993) Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Res 631:235-40 [PubMed]
Schreurs BG, Oh MM, Alkon DL (1996) Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. J Neurophysiol 75:1051-60 [Journal] [PubMed]
Schweighofer N, Doya K, Lay F (2001) Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103:35-50 [PubMed]
Simpson JI, Hulscher HC, Sabel-Goedknegt E, Ruigrok TJ (2005) Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog Brain Res 148:329-40 [Journal] [PubMed]
Stein RB (1967) The frequency of nerve action potentials generated by applied currents. Proc R Soc Lond B Biol Sci 167:64-86 [Journal] [PubMed]
Steuber V, Willshaw D (2004) A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. J Comput Neurosci 17:149-64 [Journal] [PubMed]
Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635-50 [Journal] [PubMed]
Vos BP, Maex R, Volny-Luraghi A, De Schutter E (1999) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6 [PubMed]
Wang SS, Denk W, Häusser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266-73 [Journal] [PubMed]
Williams A, Roberts PD, Leen TK (2003) Stability of negative-image equilibria in spike-timing-dependent plasticity. Phys Rev E Stat Nonlin Soft Matter Phys 68:021923 [Journal] [PubMed]
Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39:807-20 [PubMed]
(77 refs)