Citations for Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)

Legends: Link to a Model Reference cited by multiple papers


Rowan MS,Neymotin SA (2013) Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms, Tomassini M, Antonioni A, Daolio F, Buesser P, ed. pp.20

References and models cited by this paper

References and models that cite this paper

Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441-53 [Journal] [PubMed]
Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321:1686-9 [Journal] [PubMed]
Chandler B, Grossberg S (2012) Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: noise, saturation, short-term memory, synaptic scaling, and BDNF. Neural Netw 25:21-9 [Journal] [PubMed]
Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23-30 [Journal] [PubMed]
Fröhlich F, Bazhenov M, Sejnowski TJ (2008) Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci 28:1709-20 [Journal] [PubMed]
Lamsa KP, Kullmann DM, Woodin MA (2010) Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2:8 [Journal] [PubMed]
Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301-16 [Journal] [PubMed]
Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164
McClelland JL, McNaughton BL, O'Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419-457 [Journal] [PubMed]
Neymotin S, Kerr C, Francis J, Lytton W (2011) Training oscillatory dynamics with spike-timing-dependent plasticity in a computer model of neocortex Signal Processing in Medicine and Biology Symposium (SPMB), IEEE :1-6
Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19 [Journal] [PubMed]
   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]
Prieto G, Parker R, Vernon_iii F (2009) A Fortran 90 library for multitaper spectrum analysis Computers Geosciences 35:1701-1710
Rowan M (2011) Effects of Compensation, Connectivity and Tau in a Computational Model of Alzheimer's Disease Proc. IJCNN, IEEE :543-550
Rowan M (2012) Information-selectivity of Beta-amyloid pathology in an associative memory model. Front Comput Neurosci 6:2 [Journal] [PubMed]
Rutherford LC, Nelson SB, Turrigiano GG (1998) BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21:521-30 [PubMed]
Small DH (2008) Network dysfunction in Alzheimer's disease: does synaptic scaling drive disease progression? Trends Mol Med 14:103-8 [Journal] [PubMed]
Trasande CA, Ramirez JM (2007) Activity deprivation leads to seizures in hippocampal slice cultures: is epilepsy the consequence of homeostatic plasticity? J Clin Neurophysiol 24:154-64 [Journal] [PubMed]
Turrigiano G (2011) Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 34:89-103 [Journal] [PubMed]
Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422-35 [Journal] [PubMed]
van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20:8812-21 [PubMed]
Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37-44 [Journal] [PubMed]
Eguchi A, Neymotin SA and Stringer SM (2014) Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity 8:16. doi: Front. Neural Circuits 8:16 [Journal]
   Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014) [Model]
Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortex. Neural Comput 25:3263-93 [Journal] [PubMed]
   Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013) [Model]
Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton WW (2015) Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Comput 27:898-924 [Journal] [PubMed]
   Neuronal dendrite calcium wave model (Neymotin et al, 2015) [Model]
Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [Journal] [PubMed]
   Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014) [Model]
(27 refs)