Citations for Fast convergence of cerebellar learning (Luque et al. 2015)

Legends: Link to a Model Reference cited by multiple papers


Luque NR, Garrido JA, Carrillo RR, D'Angelo E, Ros E (2014) Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Front Comput Neurosci 8:97 [PubMed]

References and models cited by this paper

References and models that cite this paper

Albu-schaffer A, Haddadin S, Ott C, Stemmer A (2007) The DLR lightweight robot: design and control concepts for robots in human environments. Ind Rob Int J 34:376-385
Albus JS (1971) A theory of cerebellar function Math Biosci 10:25-61
Anastasio TJ (2001) Input minimization: a model of cerebellar learning without climbing fiber error signals. Neuroreport 12:3825-31 [PubMed]
Bellebaum C, Koch B, Schwarz M, Daum I (2008) Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain 131:829-41 [Journal] [PubMed]
Bostan AC, Dum RP, Strick PL (2013) Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 17:241-54 [Journal] [PubMed]
De Gruijl JR, Bazzigaluppi P, de Jeu MT, De Zeeuw CI (2012) Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS Comput Biol 8:e1002814 [Journal] [PubMed]
De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK (2011) Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 12:327-44 [Journal] [PubMed]
Howard IS, Ingram JN, Wolpert DM (2010) Context-dependent partitioning of motor learning in bimanual movements. J Neurophysiol 104:2082-91 [Journal] [PubMed]
Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169-85 [PubMed]
Keating JG, Thach WT (1995) Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol 73:1329-40 [Journal] [PubMed]
Kettner RE, Mahamud S, Leung HC, Sitkoff N, Houk JC, Peterson BW, Barto AG (1997) Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. J Neurophysiol 77:2115-30 [Journal] [PubMed]
Kistler WM, Leo van Hemmen J (1999) Delayed reverberation through time windows as a key to cerebellar function. Biol Cybern 81:373-80 [Journal] [PubMed]
Machuca R, Phillips K (1983) Applications of vector fields to image processing. IEEE Trans Pattern Anal Mach Intell 5:316-29 [PubMed]
Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437-70 [PubMed]
Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Mot Behav 25:203-16 [Journal] [PubMed]
Passot JB, Luque NR, Arleo A (2013) Coupling internal cerebellar models enhances online adaptation and supports offline consolidation in sensorimotor tasks. Front Comput Neurosci 7:95 [Journal] [PubMed]
Rothganger FH, Anastasio TJ (2009) Using input minimization to train a cerebellar model to simulate regulation of smooth pursuit. Biol Cybern 101:339-59 [Journal] [PubMed]
Smith MA, Casadesus G (2009) Walking toward a convergence in aging research. Front Neurosci 3:1 [Journal] [PubMed]
Solinas S, Nieus T, D'Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12 [Journal] [PubMed]
Uusisaari M, De Schutter E (2011) The mysterious microcircuitry of the cerebellar nuclei. J Physiol 589:3441-57 [Journal] [PubMed]
Uusisaari M, Knöpfel T (2011) Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum 10:637-46 [Journal] [PubMed]
Yamazaki T, Tanaka S (2009) Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum 8:423-32 [Journal] [PubMed]
Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A (2018) A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. Int J Neural Syst 28:1750017 [Journal] [PubMed]
Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A (2019) Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS Comput Biol 15:e1006298 [Journal] [PubMed]
   Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019) [Model]
(24 refs)