Citations for Python-based toolkits for STEPS (Chen and De Schutter 2014)

Legends: Link to a Model Reference cited by multiple papers


Chen W, De Schutter E (2014) Python-based geometry preparation and simulation visualization toolkits for STEPS. Front Neuroinform 8:37 [PubMed]

References and models cited by this paper

References and models that cite this paper

Andrews SS (2012) Spatial and stochastic cellular modeling with the Smoldyn simulator. Methods Mol Biol 804:519-42 [Journal] [PubMed]
Antunes G, De Schutter E (2012) A stochastic signaling network mediates the probabilistic induction of cerebellar long-term depression. J Neurosci 32:9288-300 [Journal] [PubMed]
   Cerebellar long-term depression (LTD) (Antunes and De Schutter 2012) [Model]
Beazley DM (1996) SWIG: an easy to use tool for integrating scripting languages with C and C++ Proceedings of the 4th Annual USENIX Tcl-Tk Workshop, Monterey, CA.
Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2008) PyNN: A Common Interface for Neuronal Network Simulators. Front Neuroinform 2:11 [Journal] [PubMed]
Diesmann M, Gewaltig MO (2002) NEST: An environment for neural systemssimulations Forschung und wisschenschaftliches Rechnen, Plesser T:Macho V, ed. pp.43
Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950-61 [Journal] [PubMed]
   Spike timing detection in different forms of LTD (Doi et al 2005) [Model]
Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2008) PyNEST: A Convenient Interface to the NEST Simulator. Front Neuroinform 2:12 [Journal] [PubMed]
Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. Journal Of Physical Chemistry 81:2340-2361
Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982-97 [PubMed]
Hattne J, Fange D, Elf J (2005) Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics 21:2923-4 [Journal] [PubMed]
Hepburn I, Cannon R, De Schutter E (2013) Efficient calculation of the quasi-static electrical potential on a tetrahedral mesh and its implementation in STEPS. Front Comput Neurosci 7:129 [Journal] [PubMed]
Hepburn I, Chen W, Wils S, De Schutter E (2012) STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst Biol 6:36 [Journal] [PubMed]
Karlsson B (2005) Beyond the C++ Standard Library: An Introduction to Boost
Kotaleski JH, Blackwell KT (2010) Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 11:239-51 [Journal] [PubMed]
Ray S, Bhalla US (2008) PyMOOSE: Interoperable Scripting in Python for MOOSE. Front Neuroinform 2:6 [Journal] [PubMed]
   Moose/PyMOOSE: interoperable scripting in Python for MOOSE (Ray and Bhalla 2008) [Model]
Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635-48 [Journal] [PubMed]
Santamaria F, Wils S, De Schutter E, Augustine GJ (2011) The diffusional properties of dendrites depend on the density of dendritic spines. Eur J Neurosci 34:561-8 [Journal] [PubMed]
Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell Computational Neuroscience: Realistic Modelling for Experimentalists, DeSchutter E, ed. pp.87
Wils S, De Schutter E (2009) STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with Python. Front Neuroinform 3:15 [Journal] [PubMed]
(23 refs)