Citations for Adaptive robotic control driven by a versatile spiking cerebellar network (Casellato et al. 2014)

Legends: Link to a Model Reference cited by multiple papers

Casellato C, Antonietti A, Garrido JA, Carrillo RR, Luque NR, Ros E, Pedrocchi A, D'Angelo E (2014) Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One 9:e112265 [PubMed]

References and models cited by this paper

References and models that cite this paper

Albus JS (1971) A theory of cerebellar function Math Biosci 10:25-61
Bahro M, Schreurs BG, Sunderland T, Molchan SE (1995) The effects of scopolamine, lorazepam, and glycopyrrolate on classical conditioning of the human eyeblink response. Psychopharmacology (Berl) 122:395-400 [PubMed]
Batllori R, Laramee C, Land W, Schaffer J (2011) Evolving spiking neural networks for robot control Procedia Computer Science 6:329-334
Bouganis A, Shanahan M (2010) Training a spiking neural network to control a 4-DoF robotic arm based on spike timing-dependent plasticity. IEEE International Joint Conference on Neural Networks :1-8
Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581-609 [Journal] [PubMed]
Bracha V, Zhao L, Irwin KB, Bloedel JR (2000) The human cerebellum and associative learning: dissociation between the acquisition, retention and extinction of conditioned eyeblinks. Brain Res 860:87-94 [PubMed]
Carrillo RR, Ros E, Boucheny C, Coenen OJ (2008) A real-time spiking cerebellum model for learning robot control. Biosystems 94:18-27 [Journal] [PubMed]
Casellato C, Garrido J, Franchin C, Ferrigno G, Et_al (2013) Brain-inspired Sensorimotor Robotic Platform-Learning in Cerebellum-driven Movement Tasks through a Cerebellar Realistic Model. IJCCI 2013- Proceedings of the 5th International Joint Conference on Computational Intelligence 2013:568-573
Cheron G, Dan B, Márquez-Ruiz J (2013) Translational approach to behavioral learning: lessons from cerebellar plasticity. Neural Plast 2013:853654 [Journal] [PubMed]
Chettih SN, McDougle SD, Ruffolo LI, Medina JF (2011) Adaptive timing of motor output in the mouse: the role of movement oscillations in eyelid conditioning. Front Integr Neurosci 5:72 [Journal] [PubMed]
Clopath C, Badura A, De Zeeuw CI, Brunel N (2014) A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. J Neurosci 34:7203-15 [Journal] [PubMed]
   Vestibulo-Ocular Reflex model in Matlab (Clopath at al. 2014) [Model]
D'Angelo E, Koekkoek SK, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI (2009) Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162:805-15 [Journal] [PubMed]
D'Angelo E, Nieus T, Bezzi M, Arleo A, Coenen OJ (2005) Modeling synaptic transmission and quantifying information transfer in the granular layer of the cerebellum Computational Intelligence and Bioinspired Systems :107-114
D'Angelo E, Solinas S, Garrido J, Casellato C, Pedrocchi A, Mapelli J, Gandolfi D, Prestori F (2013) Realistic modeling of neurons and networks: towards brain simulation. Funct Neurol 28:153-66 [Journal] [PubMed]
Day JJ, Wheeler RA, Roitman MF, Carelli RM (2006) Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur J Neurosci 23:1341-51 [Journal] [PubMed]
de Gruijl JR, van der Smagt P, De Zeeuw CI (2009) Anticipatory grip force control using a cerebellar model. Neuroscience 162:777-86 [Journal] [PubMed]
Gamez D (2010) Information integration based predictions about the conscious states of a spiking neural network. Conscious Cogn 19:294-310 [Journal] [PubMed]
Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619-35 [Journal] [PubMed]
Garrido JA, Luque NR, D'Angelo E, Ros E (2013) Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Front. Neural Circuits 7:159:1-20 [Journal] [PubMed]
   Distributed cerebellar plasticity implements adaptable gain control (Garrido et al., 2013) [Model]
Gerstner W, Kistler WM (2002) Spiking neuron models
Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D (2005) Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 25:3919-31 [Journal] [PubMed]
Hagras H, Pounds-cornish A, Colley M, Callaghan V, Clarke G (2004) Evolving spiking neural network controllers for autonomous robots Proceedings-ieee International Conference On Robotics And Automation 2004:4620-4626
Herreros I, Verschure PF (2013) Nucleo-olivary inhibition balances the interaction between the reactive and adaptive layers in motor control. Neural Netw 47:64-71 [Journal] [PubMed]
Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, van de Warrenburg BP, Edwards MJ (2012) Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol 590:887-97 [Journal] [PubMed]
Hofstötter C, Mintz M, Verschure PF (2002) The cerebellum in action: a simulation and robotics study. Eur J Neurosci 16:1361-76 [PubMed]
Indiveri G (1999) Neuromorphic analog VLSI sensor for visual tracking: Circuits and application examples IEEE Trans Circuits and Systems II: Analog and Digital Signal Processing 46:1337-1347
Ito M (1982) Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annu Rev Neurosci 5:275-96 [Journal] [PubMed]
Ito M (1997) Cerebellar microcomplexes. Int Rev Neurobiol 41:475-87 [PubMed]
Ito M (2011) Adaptive control of reflexes by the cerebellum. Understanding The Stretch Reflex 44:435-444
Ito M, Orlov I, Shimoyama I (1978) Reduction of the cerebellar stimulus effect on rat Deiters neurons after chemical destruction of the inferior olive. Exp Brain Res 33:143-5 [PubMed]
Ivry RB, Baldo JV (1992) Is the cerebellum involved in learning and cognition? Curr Opin Neurobiol 2:212-6 [PubMed]
Jaeger D (2003) No Parallel Fiber Volleys in the Cerebellar Cortex: Evidence from Cross-Correlation Analysis between Purkinje Cells in a Computer Model and in Recordings from Anesthetized Rats Journal of Computational Neuroscience 14:311-327 [Journal] [PubMed]
Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL (2005) Distinct patterns of stimulus generalization of increases and decreases in VOR gain. J Neurophysiol 94:3092-100 [Journal] [PubMed]
Lang EJ, Sugihara I, Welsh JP, Llinás R (1999) Patterns of spontaneous purkinje cell complex spike activity in the awake rat. J Neurosci 19:2728-39 [PubMed]
Lazdins E, Fidjeland AK, Gamez D, Shanahan MP (2011) ispike: A spiking neural interface for the icub robot. Proceedings of the International workshop on bio-inspired robots
Lenz A, Anderson SR, Pipe AG, Melhuish C, Dean P, Porrill J (2009) Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles. IEEE Trans Syst Man Cybern B Cybern 39:1420-33 [Journal] [PubMed]
Lepora NF, Porrill J, Yeo CH, Dean P (2010) Sensory prediction or motor control? Application of marr-albus type models of cerebellar function to classical conditioning. Front Comput Neurosci 4:140 [Journal] [PubMed]
Lu J, Liu H, Zhang M, Wang D, Cao Y, Ma Q, Rong D, Wang X, Buckner RL, Li K (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31:15065-71 [Journal] [PubMed]
Luque NR, Garrido JA, Carrillo RR, Coenen OJ, Ros E (2011) Cerebellarlike corrective model inference engine for manipulation tasks. IEEE Trans Syst Man Cybern B Cybern 41:1299-312 [Journal] [PubMed]
Luque NR, Garrido JA, Carrillo RR, Coenen OJ, Ros E (2011) Cerebellar input configuration toward object model abstraction in manipulation tasks. IEEE Trans Neural Netw 22:1321-8 [Journal] [PubMed]
Luque NR, Garrido JA, Carrillo RR, Tolu S, Ros E (2011) Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise. Int J Neural Syst 21:385-401 [Journal] [PubMed]
Luque NR, Garrido JA, Ralli J, Laredo JJ, Ros E (2012) From sensors to spikes: evolving receptive fields to enhance sensorimotor information in a robot-arm. Int J Neural Syst 22:1250013-33
Maass W (1997) Networks of spiking neurons: The third generation of neural network models Neural Networks 10:1659-1671
Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437-70 [PubMed]
Masuda N, Amari S (2008) A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning. J Comput Neurosci 24:137-56 [Journal] [PubMed]
Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Häusser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62:388-99 [Journal] [PubMed]
Mauk MD, Steinmetz JE, Thompson RF (1986) Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A 83:5349-53 [PubMed]
McKinstry JL, Edelman GM, Krichmar JL (2006) A cerebellar model for predictive motor control tested in a brain-based device. Proc Natl Acad Sci U S A 103:3387-92 [Journal] [PubMed]
Medina JF, Garcia KS, Mauk MD (2001) A mechanism for savings in the cerebellum. J Neurosci 21:4081-9 [PubMed]
Medina JF, Nores WL, Ohyama T, Mauk MD (2000) Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10:717-24 [PubMed]
Naveros F, Luque NR, Garrido JA, Carrillo RR, Ros E (2013) CPU-GPU hybrid platform for efficient spiking neural-network simulation Bmc Neuroscience 14:328
Nolfi S, Floreano D (2002) Synthesis of autonomous robots through evolution. Trends Cogn Sci 6:31-37 [PubMed]
Porrill J, Dean P (2007) Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol 3:1935-50 [Journal] [PubMed]
Rasmussen A, Jirenhed DA, Zucca R, Johansson F, Svensson P, Hesslow G (2013) Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci 33:13436-40 [Journal] [PubMed]
Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R (2006) Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Comput 18:2959-93 [Journal] [PubMed]
Sarlegna FR, Malfait N, Bringoux L, Bourdin C, Vercher JL (2010) Force-field adaptation without proprioception: can vision be used to model limb dynamics? Neuropsychologia 48:60-7 [Journal] [PubMed]
Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84:853-62 [Journal] [PubMed]
Schemmel J, Bruderle D, Meier K, Ostendorf B (2007) Modeling Synaptic Plasticity within Networks of Highly Accelerated I&F Neurons IEEE International Symposium on Circuits and Systems 2007:3367-3370
Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208-24 [PubMed]
Sharp T, Plana LA, Galluppi F, Furber S (2011) Event-Driven Simulation of Arbitrary Spiking Neural Networks on SpiNNaker Neural Information Processing 2011:424-430
Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587-99 [PubMed]
Simpson JI, Wylie DR, De_Zeeuw CI (1996) On climbing fiber signals and their consequence(s) Behav Brain Sci 19:384-398
Solinas S, Nieus T, D'Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12 [Journal] [PubMed]
Spoelstra J, Arbib MA (2001) Cerebellar microcomplexes and the modulation of motor pattern generators. Autonomous Robots 11:273-278
Spoelstra J, Schweighofer N, Arbib MA (2000) Cerebellar learning of accurate predictive control for fast-reaching movements. Biol Cybern 82:321-33 [Journal] [PubMed]
Stone LS, Lisberger SG (1990) Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J Neurophysiol 63:1241-61 [Journal] [PubMed]
Thompson RF, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162:732-55 [Journal] [PubMed]
Trhan P (2010) The application of spiking neural networks in autonomous robot control Computing Informatics
Tyrrell T, Willshaw D (1992) Cerebellar cortex: its simulation and the relevance of Marr's theory. Philos Trans R Soc Lond B Biol Sci 336:239-57 [Journal] [PubMed]
Van_der_smagt P (2000) Benchmarking cerebellar control Rob Auton Syst 32:237-251
Verschure P, Althaus P (1999) The study of learning and problem solving using artificial devices Synthetic Epistemology Bildung Und Erziehung 52:317-333
Vijayakumar S, D'Souza A, Schaal S (2005) Incremental online learning in high dimensions. Neural Comput 17:2602-34 [Journal] [PubMed]
Voegtlin T, Verschure PF (1999) What can robots tell us about brains? A synthetic approach towards the study of learning and problem solving. Rev Neurosci 10:291-310 [PubMed]
Welsh JP, Harvey JA (1991) Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. J Physiol 444:459-80 [PubMed]
Wolpert DM, Miall RC (1996) Forward Models for Physiological Motor Control. Neural Netw 9:1265-1279 [PubMed]
Wu Y, Collier L, Qin W, Creasey G, Bauman WA, Jarvis J, Cardozo C (2013) Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection. BMC Neurosci 14:81 [Journal] [PubMed]
Yamamoto K, Kawato M, Kotosaka S, Kitazawa S (2007) Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J Neurophysiol 97:1588-99 [Journal] [PubMed]
Yamazaki T, Igarashi J (2013) Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Netw 47:103-11 [Journal] [PubMed]
Yamazaki T, Nagao S (2012) A computational mechanism for unified gain and timing control in the cerebellum. PLoS One 7:e33319 [Journal] [PubMed]
   Cerebellar gain and timing control model (Yamazaki & Tanaka 2007)(Yamazaki & Nagao 2012) [Model]
Yamazaki T, Tanaka S (2007) The cerebellum as a liquid state machine. Neural Netw 20:290-7 [Journal] [PubMed]
Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A (2018) A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. Int J Neural Syst 28:1750017 [Journal] [PubMed]
Vannucci L, Falotico E, Laschi C (2017) Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model. Front Neurosci 11:341 [Journal] [PubMed]
   Neuromorphic muscle spindle model (Vannucci et al 2017) [Model]
(83 refs)